Suppr超能文献

数据驱动的机器学习在空气质量监测混合传感器网络中的校准传播。

Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality Monitoring.

机构信息

School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia.

Innovation Center of the School of Electrical Engineering in Belgrade, 11120 Belgrade, Serbia.

出版信息

Sensors (Basel). 2023 Mar 4;23(5):2815. doi: 10.3390/s23052815.

Abstract

Public air quality monitoring relies on expensive monitoring stations which are highly reliable and accurate but require significant maintenance and cannot be used to form a high spatial resolution measurement grid. Recent technological advances have enabled air quality monitoring that uses low-cost sensors. Being inexpensive and mobile, with wireless transfer support, such devices represent a very promising solution for hybrid sensor networks comprising public monitoring stations supported by many low-cost devices for complementary measurements. However, low-cost sensors can be influenced by weather and degradation, and considering that a spatially dense network would include them in large numbers, logistically adept solutions for low-cost device calibration are essential. In this paper, we investigate the possibility of a data-driven machine learning calibration propagation in a hybrid sensor network consisting of One public monitoring station and ten low-cost devices equipped with NO, PM, relative humidity, and temperature sensors. Our proposed solution relies on calibration propagation through a network of low-cost devices where a calibrated low-cost device is used to calibrate an uncalibrated device. This method has shown an improvement of up to 0.35/0.14 for the Pearson correlation coefficient and a reduction of 6.82 µg/m/20.56 µg/m for the RMSE, for NO and PM, respectively, showing promise for efficient and inexpensive hybrid sensor air quality monitoring deployments.

摘要

公共空气质量监测依赖于昂贵的监测站,这些监测站高度可靠且准确,但需要大量维护,并且不能用于形成高空间分辨率的测量网格。最近的技术进步使得使用低成本传感器进行空气质量监测成为可能。这些设备具有成本低、移动性强、支持无线传输等特点,是由许多低成本设备组成的混合传感器网络的理想选择,这些低成本设备可以为公共监测站提供补充测量。然而,低成本传感器会受到天气和降解的影响,而且考虑到密集的空间网络会包含大量传感器,因此对于低成本设备的校准来说,逻辑上合理的解决方案至关重要。在本文中,我们研究了在由一个公共监测站和十个配备 NO、PM、相对湿度和温度传感器的低成本设备组成的混合传感器网络中,基于数据驱动的机器学习进行校准传播的可能性。我们提出的解决方案依赖于通过低成本设备网络进行校准传播,其中一个经过校准的低成本设备用于校准未经校准的设备。对于 NO 和 PM,该方法分别显示出 Pearson 相关系数提高了 0.35/0.14,RMSE 降低了 6.82µg/m/20.56µg/m,这表明该方法在高效、低成本的混合传感器空气质量监测方面具有很大的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9f4/10007210/badb74b48178/sensors-23-02815-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验