Suppr超能文献

干预身体活动能否减轻肥胖的基因组风险?在遗传信息研究中应用健康差异框架。

Could interventions on physical activity mitigate genomic liability for obesity? Applying the health disparity framework in genetically informed studies.

机构信息

Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK.

Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, 16 De Crespigny Park, Denmark Hill, London, SE5 8AF, UK.

出版信息

Eur J Epidemiol. 2023 Apr;38(4):403-412. doi: 10.1007/s10654-023-00980-y. Epub 2023 Mar 11.

Abstract

Polygenic scores (PGS) are now commonly available in longitudinal cohort studies, leading to their integration into epidemiological research. In this work, our aim is to explore how polygenic scores can be used as exposures in causal inference-based methods, specifically mediation analyses. We propose to estimate the extent to which the association of a polygenic score indexing genetic liability to an outcome could be mitigated by a potential intervention on a mediator. To do this this, we use the interventional disparity measure approach, which allows us to compare the adjusted total effect of an exposure on an outcome, with the association that would remain had we intervened on a potentially modifiable mediator. As an example, we analyse data from two UK cohorts, the Millennium Cohort Study (MCS, N = 2575) and the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 3347). In both, the exposure is genetic liability for obesity (indicated by a PGS for BMI), the outcome is late childhood/early adolescent BMI, and the mediator and potential intervention target is physical activity, measured between exposure and outcome. Our results suggest that a potential intervention on child physical activity can mitigate some of the genetic liability for childhood obesity. We propose that including PGSs in a health disparity measure approach, and causal inference-based methods more broadly, is a valuable addition to the study of gene-environment interplay in complex health outcomes.

摘要

多基因评分(PGS)现在在纵向队列研究中普遍可用,这导致它们被整合到流行病学研究中。在这项工作中,我们的目的是探索多基因评分如何可以作为因果推理方法(特别是中介分析)中的暴露因素。我们建议估计索引遗传易感性与结果的多基因评分与对中介的潜在干预的关联程度。为此,我们使用干预差异度量方法,该方法使我们能够比较暴露对结果的调整总效应与我们对潜在可调节的中介物进行干预后仍然存在的关联。作为一个例子,我们分析了来自两个英国队列的数据分析,千禧年队列研究(MCS,N=2575)和雅芳纵向父母与子女研究(ALSPAC,N=3347)。在这两个队列中,暴露因素是肥胖的遗传易感性(由 BMI 的 PGS 表示),结果是儿童后期/青少年早期 BMI,而中介物和潜在的干预目标是身体活动,在暴露和结果之间测量。我们的结果表明,对儿童身体活动的潜在干预可以减轻一些儿童肥胖的遗传易感性。我们建议在健康差异衡量方法和更广泛的因果推理方法中纳入 PGS,这是对复杂健康结果中基因-环境相互作用的研究的有价值的补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e30/10082115/e8478662fad8/10654_2023_980_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验