Suppr超能文献

机器学习和多尺度建模如何助力眼科药物研发?

How can machine learning and multiscale modeling benefit ocular drug development?

作者信息

Wang Nannan, Zhang Yunsen, Wang Wei, Ye Zhuyifan, Chen Hongyu, Hu Guanghui, Ouyang Defang

机构信息

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China.

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Faculty of Science and Technology (FST), University of Macau, Macau, China.

出版信息

Adv Drug Deliv Rev. 2023 May;196:114772. doi: 10.1016/j.addr.2023.114772. Epub 2023 Mar 10.

Abstract

The eyes possess sophisticated physiological structures, diverse disease targets, limited drug delivery space, distinctive barriers, and complicated biomechanical processes, requiring a more in-depth understanding of the interactions between drug delivery systems and biological systems for ocular formulation development. However, the tiny size of the eyes makes sampling difficult and invasive studies costly and ethically constrained. Developing ocular formulations following conventional trial-and-error formulation and manufacturing process screening procedures is inefficient. Along with the popularity of computational pharmaceutics, non-invasive in silico modeling & simulation offer new opportunities for the paradigm shift of ocular formulation development. The current work first systematically reviews the theoretical underpinnings, advanced applications, and unique advantages of data-driven machine learning and multiscale simulation approaches represented by molecular simulation, mathematical modeling, and pharmacokinetic (PK)/pharmacodynamic (PD) modeling for ocular drug development. Following this, a new computer-driven framework for rational pharmaceutical formulation design is proposed, inspired by the potential of in silico explorations in understanding drug delivery details and facilitating drug formulation design. Lastly, to promote the paradigm shift, integrated in silico methodologies were highlighted, and discussions on data challenges, model practicality, personalized modeling, regulatory science, interdisciplinary collaboration, and talent training were conducted in detail with a view to achieving more efficient objective-oriented pharmaceutical formulation design.

摘要

眼睛具有复杂的生理结构、多样的疾病靶点、有限的药物递送空间、独特的屏障以及复杂的生物力学过程,这就需要在眼部制剂开发中更深入地了解药物递送系统与生物系统之间的相互作用。然而,眼睛体积微小,使得取样困难,侵入性研究成本高昂且受到伦理限制。按照传统的试错法制剂和制造工艺筛选程序来开发眼部制剂效率低下。随着计算药学的普及,非侵入性的计算机模拟建模与仿真为眼部制剂开发的范式转变提供了新机遇。当前工作首先系统回顾了以分子模拟、数学建模以及药代动力学(PK)/药效动力学(PD)建模为代表的数据驱动型机器学习和多尺度模拟方法在眼部药物开发中的理论基础、先进应用及独特优势。在此之后,受计算机模拟在理解药物递送细节和促进药物制剂设计方面潜力的启发,提出了一种新的计算机驱动的合理药物制剂设计框架。最后,为推动范式转变,强调了综合计算机模拟方法,并详细讨论了数据挑战、模型实用性、个性化建模、监管科学、跨学科合作以及人才培养等问题,以期实现更高效的目标导向型药物制剂设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验