Department of Endocrinology, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China.
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Ann Med. 2023 Dec;55(1):766-777. doi: 10.1080/07853890.2023.2180154.
Diabetes mellitus complicated with heart failure has high mortality and morbidity, but no reliable diagnoses and treatments are available. This study aimed to develop and verify a new model nomogram based on clinical parameters to predict diastolic cardiac dysfunction in patients with Type 2 diabetes mellitus (T2DM).
3030 patients with T2DM underwent Doppler echocardiography at the First Affiliated Hospital of Shenzhen University between January 2014 and December 2021. The patients were divided into the training dataset ( = 1701) and the verification dataset ( = 1329). In this study, a predictive diastolic cardiac dysfunction nomogram is developed using multivariable logical regression analysis, which contains the candidates selected in a minor absolute shrinkage and selection operator regression model. Discrimination in the prediction model was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The calibration curve was applied to evaluate the calibration of the alignment nomogram, and the clinical decision curve was used to determine the clinical practicability of the alignment map. The verification dataset was used to evaluate the prediction model's performance.
A multivariable model that included age, body mass index (BMI), triglyceride (TG), creatine phosphokinase isoenzyme (CK-MB), serum sodium (Na), and urinary albumin/creatinine ratio (UACR) was presented as the nomogram. We obtained the model for estimating diastolic cardiac dysfunction in patients with T2DM. The AUC-ROC of the training dataset in our model was 0.8307, with 95% CI of 0.8109-0.8505. Similar to the results obtained with the training dataset, the AUC-ROC of the verification dataset in our model was 0.8083, with 95% CI of 0.7843-0.8324, thus demonstrating robust. The function of the predictive model was as follows: Diastolic Dysfunction = -4.41303 + 0.14100Age(year)+0.10491BMI (kg/m) +0.12902TG (mmol/L) +0.03970CK-MB (ng/mL) -0.03988*Na(mmol/L) +0.65395 * (UACR > 30 mg/g) + 1.10837 * (UACR > 300 mg/g). The calibration plot diagram of predicted probabilities against observed DCM rates indicated excellent concordance. Decision curve analysis demonstrated that the novel nomogram was clinically useful.
Diastolic cardiac dysfunction in patients with T2DM can be predicted by clinical parameters. Our prediction model may represent an effective tool for large-scale epidemiological study of diastolic cardiac dysfunction in T2DM patients and provide a reliable method for early screening of T2DM patients with cardiac complications.KEY MESSAGESThis study used clinical parameters to predict diastolic cardiac dysfunction in patients with T2DM. This study established a nomogram for predicting diastolic cardiac dysfunction by multivariate logical regression analysis. Our predictive model can be used as an effective tool for large-scale epidemiological study of diastolic cardiac dysfunction in patients with T2DM and provides a reliable method for early screening of cardiac complications in patients with T2DM.
糖尿病合并心力衰竭死亡率和发病率高,但目前尚无可靠的诊断和治疗方法。本研究旨在开发和验证一种新的基于临床参数的列线图模型,以预测 2 型糖尿病(T2DM)患者的舒张性心脏功能障碍。
2014 年 1 月至 2021 年 12 月,深圳大学第一附属医院对 3030 例 T2DM 患者进行了多普勒超声心动图检查。将患者分为训练数据集(n=1701)和验证数据集(n=1329)。本研究采用多元逻辑回归分析建立预测舒张性心脏功能障碍的列线图模型,其中包含在小绝对收缩和选择算子回归模型中选择的候选者。使用接受者操作特征曲线(ROC)下的面积(AUC-ROC)评估预测模型的判别能力。校准曲线用于评估列线图的校准,临床决策曲线用于确定列线图的临床实用性。验证数据集用于评估预测模型的性能。
该模型包括年龄、体重指数(BMI)、甘油三酯(TG)、肌酸磷酸激酶同工酶(CK-MB)、血清钠(Na)和尿白蛋白/肌酐比值(UACR)等临床参数。我们得到了用于估计 T2DM 患者舒张性心脏功能障碍的模型。训练数据集中模型的 AUC-ROC 为 0.8307,95%CI 为 0.8109-0.8505。与训练数据集的结果相似,验证数据集中模型的 AUC-ROC 为 0.8083,95%CI 为 0.7843-0.8324,表明该模型具有良好的稳健性。预测模型的功能如下:舒张功能障碍= -4.41303 + 0.14100年龄(年)+0.10491BMI(kg/m)+0.12902TG(mmol/L)+0.03970CK-MB(ng/mL)-0.03988Na(mmol/L)+0.65395(UACR>30mg/g)+1.10837*(UACR>300mg/g)。预测概率与观察到的 DCM 发生率之间的校准图表明具有极好的一致性。决策曲线分析表明,新的列线图具有临床实用性。
临床参数可用于预测 T2DM 患者的舒张性心脏功能障碍。我们的预测模型可能是 T2DM 患者舒张性心脏功能障碍大规模流行病学研究的有效工具,并为 T2DM 患者心脏并发症的早期筛查提供了可靠的方法。
本研究使用临床参数预测 T2DM 患者的舒张性心脏功能障碍。本研究通过多元逻辑回归分析建立了预测舒张性心脏功能障碍的列线图模型。我们的预测模型可作为 T2DM 患者舒张性心脏功能障碍大规模流行病学研究的有效工具,并为 T2DM 患者心脏并发症的早期筛查提供可靠方法。