Suppr超能文献

新型模型利用中国深圳大学第一附属医院的回顾性数据集预测合并代谢综合征的2型糖尿病患者。

Novel Model Predicts Type 2 Diabetes Mellitus Patients Complicated With Metabolic Syndrome Using Retrospective Dataset From First Affiliated Hospital of Shenzhen University, China.

作者信息

Lai Jinghua, Hao Mingyu, Huang Xiaohong, Chen Shujuan, Yan Dewen, Li Haiyan

机构信息

Department of Endocrinology, Shenzhen Second People's Hospital, Health Science Center of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Center for Diabetes Control and Prevention, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.

Department of Endocrinology, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China.

出版信息

Int J Endocrinol. 2025 Apr 24;2025:9558141. doi: 10.1155/ije/9558141. eCollection 2025.

Abstract

Metabolic syndrome (MS) is the most important risk factor for Type 2 diabetes mellitus (T2DM) and cardiovascular disease. This study used a retrospective dataset from the First Affiliated Hospital of Shenzhen University and aimed to develop and validate a novel model nomogram based on clinical parameters to predict MS in patients with T2DM. A total of 2854 patients with T2DM between January 2014 and May 2022 were selected and divided into a training dataset ( = 2114) and a validation dataset ( = 740). This study used multivariate logistic regression analysis to develop a nomogram for predicting MS in patients with T2DM that included candidates selected in the LASSO regression model. The data were set standardized before LASSO regression. The area under the receiver operating characteristic curve (AUC-ROC) was used to assess discrimination in the prediction model. The calibration curve is used to evaluate the calibration of the calibration nomogram, and the clinical decision curve is used to determine the clinical utility of the calibration diagram. The validation dataset is used to evaluate the performance of predictive models. A total of 2854 patients were eligible for this study. There were 1941 (68.01%) patients with MS. The training dataset included 20 potential risk factors of the patient's demographic, clinical, and laboratory indexes in the LASSO regression analysis. Gender, hypertension, BMI, WC, HbA1c, TG, LDL, and HDL were multivariate models. We obtained a model for estimating MS in patients with T2DM. The AUC-ROC of the training dataset in our model is 0.886, and the 95% CI is 0.871-0.901. Similar to the results obtained from the training dataset, the AUC-ROC of the validation dataset in our model is 0.859, and the 95% CI is 0.831-0.887, thus proving the robustness of the model. The prediction model is as follows: logit (MS) = -9.18209 + 0.14406 ∗ BMI (kg/m) + 0.09218 ∗ WC (cm) + 1.05761 ∗ TG (mmol/L)-3.30013 ∗ HDL (mmol/L). The calibration plots of the predicted probabilities show excellent agreement with the observed MS rates. Decision curve analysis demonstrated that the new nomogram provided significant net benefits in clinical applications. The prediction model of this study covers four clinically easily obtained parameters: BMI, WC, TG, and HDL, and shows a high accuracy rate in the validation dataset. Our predictive model may provide an effective method for large-scale epidemiological studies of T2DM patients with MS and offer a practical tool for the early detection of MS in clinical work.

摘要

代谢综合征(MS)是2型糖尿病(T2DM)和心血管疾病最重要的危险因素。本研究使用了深圳大学第一附属医院的回顾性数据集,旨在开发并验证一种基于临床参数的新型列线图模型,以预测T2DM患者的MS。选取了2014年1月至2022年5月期间共2854例T2DM患者,并将其分为训练数据集(n = 2114)和验证数据集(n = 740)。本研究采用多因素逻辑回归分析,开发了一个用于预测T2DM患者MS的列线图,其中包括在LASSO回归模型中选择的候选因素。在进行LASSO回归之前对数据进行标准化处理。采用受试者工作特征曲线下面积(AUC-ROC)评估预测模型的辨别力。校准曲线用于评估校准列线图的校准情况,临床决策曲线用于确定校准图的临床实用性。验证数据集用于评估预测模型的性能。共有2854例患者符合本研究条件。其中1941例(68.01%)患有MS。训练数据集在LASSO回归分析中纳入了患者人口统计学、临床和实验室指标的20个潜在危险因素。性别、高血压、BMI、腰围(WC)、糖化血红蛋白(HbA1c)、甘油三酯(TG)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL)为多因素模型。我们获得了一个用于估计T2DM患者MS的模型。我们模型中训练数据集的AUC-ROC为0.886,95%置信区间为0.871 - 0.901。与从训练数据集获得的结果相似,我们模型中验证数据集的AUC-ROC为0.859,95%置信区间为0.831 - 0.887,从而证明了该模型的稳健性。预测模型如下:logit(MS)= -9.18209 + 0.14406 * BMI(kg/m²)+ 0.09218 * WC(cm)+ 1.05761 * TG(mmol/L)- 3.30013 * HDL(mmol/L)。预测概率的校准图与观察到的MS发生率显示出极好的一致性。决策曲线分析表明,新的列线图在临床应用中提供了显著的净效益。本研究的预测模型涵盖了四个临床易于获取的参数:BMI、WC、TG和HDL,并且在验证数据集中显示出较高的准确率。我们的预测模型可能为T2DM合并MS患者的大规模流行病学研究提供一种有效的方法,并为临床工作中MS的早期检测提供一个实用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d8/12045690/2d0dad30f905/IJE2025-9558141.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验