Suppr超能文献

用于肾肿瘤特征描述的多参数磁共振成像:对科内利斯提出的算法的验证研究

Multiparametric magnetic resonance imaging for characterizing renal tumors: A validation study of the algorithm presented by Cornelis .

作者信息

Pietersen Pia Iben, Lynggård Bo Madsen Janni, Asmussen Jon, Lund Lars, Nielsen Tommy Kjærgaard, Pedersen Michael, Engvad Birte, Graumann Ole

机构信息

Department of Radiology, Odense University Hospital, Odense, Denmark.

Research and Innovation Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

出版信息

J Clin Imaging Sci. 2023 Feb 2;13:7. doi: 10.25259/JCIS_124_2022. eCollection 2023.

Abstract

OBJECTIVES

In the last decade, the incidence of renal cell carcinoma (RCC) has been rising, with the greatest increase observed for solid tumors. Magnetic resonance imaging (MRI) protocols and algorithms have recently been available for classifying RCC subtypes and benign subtypes. The objective of this study was to prospectively validate the MRI algorithm presented by Cornelis . for RCC classification.

MATERIAL AND METHODS

Over a 7-month period, 38 patients with 44 renal tumors were prospectively included in the study and received an MRI examination in addition to the conventional investigation program. The MRI sequences were: T2-weighted, dual chemical shift MRI, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced T1-weighted in wash-in and wash-out phases. The images were evaluated according to the algorithm by two experienced, blinded radiologists, and the histopathological diagnosis served as the gold standard.

RESULTS

Of 44 tumors in 38 patients, only 8 tumors (18.2%) received the same MRI diagnosis according to the algorithm as the histopathological diagnosis. MRI diagnosed 16 angiomyolipoma, 14 clear cell RCC (ccRCC), 12 chromophobe RCC (chRCC), and two papillary RCC (pRCC), while histopathological examination diagnosed 24 ccRCC, four pRCC, one chRCC, and one mixed tumor of both pRCC and chRCC. Malignant tumors were statistically significantly larger than the benign (3.16 ± 1.34 cm vs. 2.00 ± 1.04 cm, = 0.006).

CONCLUSION

This prospective study could not reproduce Cornelis .'s results and does not support differentiating renal masses using multiparametric MRI without percutaneous biopsy in the future. The MRI algorithm showed few promising results to categorize renal tumors, indicating histopathology for clinical decisions and follow-up regimes of renal masses are still required.

摘要

目的

在过去十年中,肾细胞癌(RCC)的发病率一直在上升,实体瘤的增长最为显著。磁共振成像(MRI)方案和算法最近已可用于对RCC亚型和良性亚型进行分类。本研究的目的是前瞻性验证Cornelis提出的用于RCC分类的MRI算法。

材料与方法

在7个月的时间里,前瞻性纳入了38例患有44个肾肿瘤的患者,除了常规检查程序外,还接受了MRI检查。MRI序列包括:T2加权成像、双化学位移MRI、扩散加权成像(DWI)以及动态对比增强T1加权成像的动脉期和静脉期。由两名经验丰富的、不知情的放射科医生根据该算法对图像进行评估,组织病理学诊断作为金标准。

结果

在38例患者的44个肿瘤中,根据该算法,只有8个肿瘤(18.2%)的MRI诊断与组织病理学诊断一致。MRI诊断出16例血管平滑肌脂肪瘤、14例透明细胞肾细胞癌(ccRCC)、12例嫌色细胞肾细胞癌(chRCC)和2例乳头状肾细胞癌(pRCC),而组织病理学检查诊断出24例ccRCC、4例pRCC、1例chRCC以及1例pRCC和chRCC的混合肿瘤。恶性肿瘤在统计学上显著大于良性肿瘤(3.16±1.34 cm对2.00±1.04 cm,P = 0.006)。

结论

这项前瞻性研究未能重现Cornelis的结果,不支持未来在不进行经皮活检的情况下使用多参数MRI鉴别肾肿块。该MRI算法在对肾肿瘤进行分类方面显示出的有前景的结果很少,表明对于肾肿块的临床决策和随访方案仍需要组织病理学检查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03f/9992978/032cff4feb01/JCIS-13-7-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验