Suppr超能文献

基于逻辑的高内涵图像机械机器学习揭示了药物如何差异性地调节心脏成纤维细胞。

Logic-based mechanistic machine learning on high-content images reveals how drugs differentially regulate cardiac fibroblasts.

作者信息

Nelson Anders R, Christiansen Steven L, Naegle Kristen M, Saucerman Jeffrey J

机构信息

University of Virginia School of Medicine, Charlottesville, VA 22903.

Brigham Young University Department of Biochemistry, Provo, UT 84602.

出版信息

bioRxiv. 2023 Oct 23:2023.03.01.530599. doi: 10.1101/2023.03.01.530599.

Abstract

Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. These cells exhibit highly plastic responses in phenotype during fibrosis in response to environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs differentially regulate measures of cardiac fibroblast phenotype, which may help identify treatments for cardiac fibrosis. We conducted a high content microscopy screen of human cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFβ and/or IL-1β, measuring phenotype across 137 single-cell features. We used the phenotypic data from our high content imaging to train a logic-based mechanistic machine learning model (LogiMML) for fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce actin filament assembly and actin-myosin stress fiber formation, respectively. Validating the LogiMML model prediction that PI3K partially mediates the effects of Src inhibition, we found that PI3K inhibition reduces actin-myosin stress fiber formation and procollagen I production in human cardiac fibroblasts. In this study, we establish a modeling approach combining the strengths of logic-based network models and regularized regression models, apply this approach to predict mechanisms that mediate the differential effects of drugs on fibroblasts, revealing Src inhibition acting via PI3K as a potential therapy for cardiac fibrosis.

摘要

成纤维细胞是心脏损伤后细胞外基质沉积的重要调节因子。在纤维化过程中,这些细胞会根据环境刺激表现出高度可塑性的表型反应。在此,我们测试候选抗纤维化药物是否以及如何差异性地调节心脏成纤维细胞表型的各项指标,这可能有助于确定心脏纤维化的治疗方法。我们在转化生长因子β(TGFβ)和/或白细胞介素-1β(IL-1β)的背景下,对用13种临床相关药物处理的人心脏成纤维细胞进行了高内涵显微镜筛选,测量了137个单细胞特征的表型。我们利用高内涵成像的表型数据训练了一个基于逻辑的成纤维细胞信号传导机制机器学习模型(LogiMML)。该模型预测了吡非尼酮和Src抑制剂WH-4-023分别如何减少肌动蛋白丝组装和肌动蛋白-肌球蛋白应力纤维形成。通过验证LogiMML模型关于PI3K部分介导Src抑制作用的预测,我们发现抑制PI3K可减少人心脏成纤维细胞中肌动蛋白-肌球蛋白应力纤维形成和I型前胶原产生。在本研究中,我们建立了一种结合基于逻辑的网络模型和正则化回归模型优势的建模方法,并将该方法应用于预测介导药物对成纤维细胞差异性作用的机制,揭示Src通过PI3K发挥抑制作用是心脏纤维化的一种潜在治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4962/10602417/41a8046370c2/nihpp-2023.03.01.530599v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验