Suppr超能文献

心脏成纤维细胞表型可塑性的转录调控

Transcriptional regulation of cardiac fibroblast phenotypic plasticity.

作者信息

Burgos Villar Kimberly N, Liu Xiaoyi, Small Eric M

机构信息

Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

出版信息

Curr Opin Physiol. 2022 Aug;28. doi: 10.1016/j.cophys.2022.100556. Epub 2022 Jun 3.

Abstract

Cardiac fibroblasts play critical roles in the maintenance of cardiac structure and the response to cardiac insult. Extracellular matrix deposition by activated resident cardiac fibroblasts, called myofibroblasts, is an essential wound healing response. However, persistent fibroblast activation contributes to pathological fibrosis and cardiac chamber stiffening, which can cause diastolic dysfunction, heart failure, and initiate lethal arrhythmias. The dynamic and phenotypically plastic nature of cardiac fibroblasts is governed in part by the transcriptional regulation of genes encoding extracellular matrix molecules. Understanding how fibroblasts integrate various biomechanical cues into a precise transcriptional response may uncover therapeutic strategies to prevent fibrosis. Here, we provide an overview of the recent literature on transcriptional control of cardiac fibroblast plasticity and fibrosis, with a focus on canonical and non-canonical TGF-β signaling, biomechanical regulation of Hippo/YAP and Rho/MRTF signaling, and metabolic and epigenetic control of fibroblast activation.

摘要

心脏成纤维细胞在维持心脏结构以及对心脏损伤的反应中发挥着关键作用。被激活的驻留心脏成纤维细胞(即肌成纤维细胞)分泌细胞外基质是伤口愈合的重要反应。然而,成纤维细胞的持续激活会导致病理性纤维化和心腔僵硬,进而引发舒张功能障碍、心力衰竭并诱发致命性心律失常。心脏成纤维细胞的动态性和表型可塑性部分受编码细胞外基质分子的基因的转录调控。了解成纤维细胞如何将各种生物力学信号整合为精确的转录反应,可能会揭示预防纤维化的治疗策略。在此,我们概述了近期关于心脏成纤维细胞可塑性和纤维化转录控制的文献,重点关注经典和非经典转化生长因子-β信号通路、Hippo/YAP和Rho/MRTF信号通路的生物力学调控,以及成纤维细胞激活的代谢和表观遗传控制。

相似文献

1
Transcriptional regulation of cardiac fibroblast phenotypic plasticity.
Curr Opin Physiol. 2022 Aug;28. doi: 10.1016/j.cophys.2022.100556. Epub 2022 Jun 3.
2
Transcriptional control of cardiac fibroblast plasticity.
J Mol Cell Cardiol. 2016 Feb;91:52-60. doi: 10.1016/j.yjmcc.2015.12.016. Epub 2015 Dec 22.
3
Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts.
Exp Biol Med (Maywood). 2018 Apr;243(7):601-612. doi: 10.1177/1535370218761628. Epub 2018 Mar 4.
5
SKI activates the Hippo pathway via LIMD1 to inhibit cardiac fibroblast activation.
Basic Res Cardiol. 2021 Apr 13;116(1):25. doi: 10.1007/s00395-021-00865-9.
6
Transcriptional plasticity of fibroblasts in heart disease.
Biochem Soc Trans. 2022 Oct 31;50(5):1247-1255. doi: 10.1042/BST20210864.
7
Dynamic Chromatin Targeting of BRD4 Stimulates Cardiac Fibroblast Activation.
Circ Res. 2019 Sep 13;125(7):662-677. doi: 10.1161/CIRCRESAHA.119.315125. Epub 2019 Aug 14.
8
Blockade of Fibroblast YAP Attenuates Cardiac Fibrosis and Dysfunction Through MRTF-A Inhibition.
JACC Basic Transl Sci. 2020 Sep 28;5(9):931-945. doi: 10.1016/j.jacbts.2020.07.009. eCollection 2020 Sep.
9
Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis.
Wound Repair Regen. 2021 Jul;29(4):667-677. doi: 10.1111/wrr.12947. Epub 2021 Jun 16.
10
A-kinase anchoring protein-Lbc promotes pro-fibrotic signaling in cardiac fibroblasts.
Biochim Biophys Acta. 2014 Feb;1843(2):335-45. doi: 10.1016/j.bbamcr.2013.11.008. Epub 2013 Nov 22.

引用本文的文献

1
Cardiac fibrosis inhibitor CTPR390 prevents structural and morphological changes in human engineered cardiac connective tissue.
iScience. 2025 Jun 26;28(8):113013. doi: 10.1016/j.isci.2025.113013. eCollection 2025 Aug 15.
2
Logic-based mechanistic machine learning on high-content images reveals how drugs differentially regulate cardiac fibroblasts.
Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2303513121. doi: 10.1073/pnas.2303513121. Epub 2024 Jan 24.
5
Dynamic and static biomechanical traits of cardiac fibrosis.
Front Bioeng Biotechnol. 2022 Oct 31;10:1042030. doi: 10.3389/fbioe.2022.1042030. eCollection 2022.

本文引用的文献

1
MBNL1 drives dynamic transitions between fibroblasts and myofibroblasts in cardiac wound healing.
Cell Stem Cell. 2022 Mar 3;29(3):419-433.e10. doi: 10.1016/j.stem.2022.01.012. Epub 2022 Feb 16.
3
Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction.
Cell Stem Cell. 2022 Feb 3;29(2):281-297.e12. doi: 10.1016/j.stem.2021.10.009. Epub 2021 Nov 10.
4
The landscape of accessible chromatin in quiescent cardiac fibroblasts and cardiac fibroblasts activated after myocardial infarction.
Epigenetics. 2022 Sep;17(9):1020-1039. doi: 10.1080/15592294.2021.1982158. Epub 2021 Oct 25.
5
Fibroblasts: Origins, definitions, and functions in health and disease.
Cell. 2021 Jul 22;184(15):3852-3872. doi: 10.1016/j.cell.2021.06.024.
6
A transcriptional switch governs fibroblast activation in heart disease.
Nature. 2021 Jul;595(7867):438-443. doi: 10.1038/s41586-021-03674-1. Epub 2021 Jun 23.
7
Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts.
Nat Biomed Eng. 2021 Dec;5(12):1485-1499. doi: 10.1038/s41551-021-00709-w. Epub 2021 Apr 19.
8
Prevention of Fibrosis and Pathological Cardiac Remodeling by Salinomycin.
Circ Res. 2021 May 28;128(11):1663-1678. doi: 10.1161/CIRCRESAHA.120.317791. Epub 2021 Apr 7.
9
GRK5 is a regulator of fibroblast activation and cardiac fibrosis.
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2012854118.
10
Blockade of Fibroblast YAP Attenuates Cardiac Fibrosis and Dysfunction Through MRTF-A Inhibition.
JACC Basic Transl Sci. 2020 Sep 28;5(9):931-945. doi: 10.1016/j.jacbts.2020.07.009. eCollection 2020 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验