Burgos Villar Kimberly N, Liu Xiaoyi, Small Eric M
Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
Curr Opin Physiol. 2022 Aug;28. doi: 10.1016/j.cophys.2022.100556. Epub 2022 Jun 3.
Cardiac fibroblasts play critical roles in the maintenance of cardiac structure and the response to cardiac insult. Extracellular matrix deposition by activated resident cardiac fibroblasts, called myofibroblasts, is an essential wound healing response. However, persistent fibroblast activation contributes to pathological fibrosis and cardiac chamber stiffening, which can cause diastolic dysfunction, heart failure, and initiate lethal arrhythmias. The dynamic and phenotypically plastic nature of cardiac fibroblasts is governed in part by the transcriptional regulation of genes encoding extracellular matrix molecules. Understanding how fibroblasts integrate various biomechanical cues into a precise transcriptional response may uncover therapeutic strategies to prevent fibrosis. Here, we provide an overview of the recent literature on transcriptional control of cardiac fibroblast plasticity and fibrosis, with a focus on canonical and non-canonical TGF-β signaling, biomechanical regulation of Hippo/YAP and Rho/MRTF signaling, and metabolic and epigenetic control of fibroblast activation.
心脏成纤维细胞在维持心脏结构以及对心脏损伤的反应中发挥着关键作用。被激活的驻留心脏成纤维细胞(即肌成纤维细胞)分泌细胞外基质是伤口愈合的重要反应。然而,成纤维细胞的持续激活会导致病理性纤维化和心腔僵硬,进而引发舒张功能障碍、心力衰竭并诱发致命性心律失常。心脏成纤维细胞的动态性和表型可塑性部分受编码细胞外基质分子的基因的转录调控。了解成纤维细胞如何将各种生物力学信号整合为精确的转录反应,可能会揭示预防纤维化的治疗策略。在此,我们概述了近期关于心脏成纤维细胞可塑性和纤维化转录控制的文献,重点关注经典和非经典转化生长因子-β信号通路、Hippo/YAP和Rho/MRTF信号通路的生物力学调控,以及成纤维细胞激活的代谢和表观遗传控制。