Suppr超能文献

Is low-level respiratory resistive loading during exercise perceived as breathlessness?

作者信息

Lane R, Adams L, Guz A

机构信息

Department of Medicine, Charing Cross and Westminster Medical School, London.

出版信息

Clin Sci (Lond). 1987 Dec;73(6):627-34. doi: 10.1042/cs0730627.

Abstract
  1. The effect of adding low-level (2.7 cmH2O 1(-1) s) external respiratory resistive loads on exercise-induced breathlessness has been examined in naive normal subjects; the intensity of this loading was chosen to simulate that confronting an asthmatic subject during exercise. 2. Each of 18 subjects performed two separate tests in which workload was oscillated while the respiratory loading was changed every minute between no loading, inspiratory loading only, and inspiratory plus expiratory loading. Each loading condition was given three times, and both these changes and those in workload were unpredictable as far as the subject was concerned. 3. The purpose was to 'confuse' subjects and obtain subjective estimates of their intensity of breathlessness independent of any expectation associated solely with the readily perceptible changes in external resistances to breathing. The study design was balanced for the group as a whole, both in terms of workload and respiratory loading condition. 4. The addition of these respiratory resistive loads during exercise did not result in a significant increase in the intensity of breathlessness. 5. Estimates of the rate of work of breathing revealed that this increased more with respiratory loading than it did as ventilation rose throughout the test; on the other hand, the intensity of breathlessness increased by a greater extent with continued exercise compared with the changes accompanying the addition of respiratory loads. 6. It is concluded that the intensity of the sensation of breathlessness experienced by normal subjects during exercise is not simple a reflection of an increased rate of work of breathing being performed by the respiratory muscles.(ABSTRACT TRUNCATED AT 250 WORDS)
摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验