Suppr超能文献

通过无标记电筛选和阻抗激活分选来选择液滴中可封装的细胞数量。

Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting.

作者信息

Zhong Jianwei, Liang Minhui, Tang Qiang, Ai Ye

机构信息

Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.

Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.

出版信息

Mater Today Bio. 2023 Feb 28;19:100594. doi: 10.1016/j.mtbio.2023.100594. eCollection 2023 Apr.

Abstract

Single-cell encapsulation in droplets has become a powerful tool in immunotherapy, medicine discovery, and single-cell analysis, thanks to its capability for cell confinement in picoliter volumes. However, the purity and throughput of single-cell droplets are limited by random encapsulation process, which resuts in a majority of empty and multi-cells droplets. Herein we introduce the first label-free selectable cell quantity encapsulation in droplets sorting system to overcome this problem. The system utilizes a simple and reliable electrical impedance based screening (98.9% of accuracy) integrated with biocompatible acoustic sorting to select single-cell droplets, achieving 90.3% of efficiency and up to 200 ​Hz of throughput, by removing multi-cells (∼60% of rejection) and empty droplets (∼90% of rejection). We demonstrate the use of the droplet sorting to improve the throughput of single-cell encapsulation by ∼9-fold compared to the conventional random encapsulation process.

摘要

由于能够将细胞限制在皮升体积内,液滴中的单细胞封装已成为免疫治疗、药物发现和单细胞分析中的一种强大工具。然而,单细胞液滴的纯度和通量受到随机封装过程的限制,这导致大多数液滴为空液滴或含有多个细胞。在此,我们引入了首个用于液滴分选系统的无标记可选细胞数量封装方法,以克服这一问题。该系统利用基于简单可靠的电阻抗筛选(准确率98.9%)并结合生物相容性声学分选来选择单细胞液滴,通过去除含有多个细胞的液滴(约60%的拒收率)和空液滴(约90%的拒收率),实现了90.3%的效率和高达200赫兹的通量。我们证明,与传统的随机封装过程相比,液滴分选可将单细胞封装的通量提高约9倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f2/9999206/e123750a5b84/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验