Suppr超能文献

基于深度学习的癌症治疗肽类药物预测

Peptide-Based Drug Predictions for Cancer Therapy Using Deep Learning.

作者信息

Sun Yih-Yun, Lin Tzu-Tang, Cheng Wen-Chih, Lu I-Hsuan, Lin Chung-Yen, Chen Shu-Hwa

机构信息

Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106, Taiwan.

Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.

出版信息

Pharmaceuticals (Basel). 2022 Mar 30;15(4):422. doi: 10.3390/ph15040422.

Abstract

Anticancer peptides (ACPs) are selective and toxic to cancer cells as new anticancer drugs. Identifying new ACPs is time-consuming and expensive to evaluate all candidates' anticancer abilities. To reduce the cost of ACP drug development, we collected the most updated ACP data to train a convolutional neural network (CNN) with a peptide sequence encoding method for initial in silico evaluation. Here we introduced PC6, a novel protein-encoding method, to convert a peptide sequence into a computational matrix, representing six physicochemical properties of each amino acid. By integrating data, encoding method, and deep learning model, we developed AI4ACP, a user-friendly web-based ACP distinguisher that can predict the anticancer property of query peptides and promote the discovery of peptides with anticancer activity. The experimental results demonstrate that AI4ACP in CNN, trained using the new ACP collection, outperforms the existing ACP predictors. The 5-fold cross-validation of AI4ACP with the new collection also showed that the model could perform at a stable level on high accuracy around 0.89 without overfitting. Using AI4ACP, users can easily accomplish an early-stage evaluation of unknown peptides and select potential candidates to test their anticancer activities quickly.

摘要

抗癌肽(ACPs)作为新型抗癌药物,对癌细胞具有选择性和毒性。鉴定新的抗癌肽需要耗费大量时间和成本来评估所有候选物的抗癌能力。为降低抗癌肽药物开发成本,我们收集了最新的抗癌肽数据,采用肽序列编码方法训练卷积神经网络(CNN)进行初步的计算机模拟评估。在此,我们引入了一种新型蛋白质编码方法PC6,将肽序列转换为一个计算矩阵,该矩阵代表每个氨基酸的六种物理化学性质。通过整合数据、编码方法和深度学习模型,我们开发了AI4ACP,这是一个基于网络的用户友好型抗癌肽鉴别工具,它可以预测查询肽的抗癌特性,并促进具有抗癌活性肽的发现。实验结果表明,使用新的抗癌肽数据集训练的CNN中的AI4ACP优于现有的抗癌肽预测器。AI4ACP对新数据集进行的五折交叉验证还表明,该模型在高精度约为0.89的情况下能够稳定运行,且不会出现过拟合。使用AI4ACP,用户可以轻松完成对未知肽的早期评估,并快速选择潜在候选物来测试其抗癌活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d425/9028292/05df818a75d7/pharmaceuticals-15-00422-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验