Suppr超能文献

基于列线图预测肝豆状核变性患者脾切除术后门静脉系统血栓形成

Nomogram-based prediction of portal vein system thrombosis formation after splenectomy in patients with hepatolenticular degeneration.

作者信息

Zheng Zhou, Yu Qingsheng, Peng Hui, Huang Long, Zhang Wanzong, Shen Yi, Feng Hui, Jing Wenshan, Zhang Qi

机构信息

The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.

Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei, Anhui, China.

出版信息

Front Med (Lausanne). 2023 Feb 23;10:1103223. doi: 10.3389/fmed.2023.1103223. eCollection 2023.

Abstract

OBJECTIVE

Splenectomy is a vital treatment method for hypersplenism with portal hypertension. However, portal venous system thrombosis (PVST) is a serious problem after splenectomy. Therefore, constructing an effective visual risk prediction model is important for preventing, diagnosing, and treating early PVST in hepatolenticular degeneration (HLD) surgical patients.

METHODS

Between January 2016 and December 2021, 309 HLD patients were selected. The data were split into a development set (215 cases from January 2016 to December 2019) and a validation set (94 cases from January 2019 to December 2021). Patients' clinical characteristics and laboratory examinations were obtained from electronic medical record system, and PVST was diagnosed using Doppler ultrasound. Univariate and multivariate logistic regression analyses were used to establish the prediction model by variables filtered by LASSO regression, and a nomogram was drawn. The area under the curve (AUC) of receiver operating characteristic (ROC) curve and Hosmer-Lemeshow goodness-of-fit test were used to evaluate the differentiation and calibration of the model. Clinical net benefit was evaluated by using decision curve analysis (DCA). The 36-month survival of PVST was studied as well.

RESULTS

Seven predictive variables were screened out using LASSO regression analysis, including grade, POD14D-dimer (Postoperative day 14 D-dimer), POD7PLT (Postoperative day 7 platelet), PVD (portal vein diameter), PVV (portal vein velocity), PVF (portal vein flow), and SVD (splenic vein diameter). Multivariate logistic regression analysis revealed that all seven predictive variables had predictive values ( < 0.05). According to the prediction variables, the diagnosis model and predictive nomogram of PVST cases were constructed. The AUC under the ROC curve obtained from the prediction model was 0.812 (95% CI: 0.756-0.869) in the development set and 0.839 (95% CI: 0.756-0.921) in the validation set. Hosmer-Lemeshow goodness-of-fit test fitted well ( = 0.858 for development set; = 0.137 for validation set). The nomogram model was found to be clinically useful by DCA. The 36-month survival rate of three sites of PVST was significantly different from that of one ( = 0.047) and two sites ( = 0.023).

CONCLUSION

The proposed nomogram-based prediction model can predict postoperative PVST. Meanwhile, an earlier intervention should be performed on three sites of PVST.

摘要

目的

脾切除术是治疗门静脉高压伴脾功能亢进的重要方法。然而,门静脉系统血栓形成(PVST)是脾切除术后的一个严重问题。因此,构建有效的可视化风险预测模型对于肝豆状核变性(HLD)手术患者早期PVST的预防、诊断和治疗具有重要意义。

方法

选取2016年1月至2021年12月期间的309例HLD患者。将数据分为开发集(2016年1月至2019年12月的215例)和验证集(2019年1月至2021年12月的94例)。从电子病历系统中获取患者的临床特征和实验室检查结果,并使用多普勒超声诊断PVST。采用单因素和多因素逻辑回归分析,通过LASSO回归筛选出的变量建立预测模型,并绘制列线图。采用受试者操作特征(ROC)曲线下面积(AUC)和Hosmer-Lemeshow拟合优度检验评估模型的区分度和校准度。采用决策曲线分析(DCA)评估临床净效益。同时研究了PVST的36个月生存率。

结果

通过LASSO回归分析筛选出7个预测变量,包括分级、术后第14天D-二聚体(POD14D-dimer)、术后第7天血小板(POD7PLT)、门静脉直径(PVD)、门静脉流速(PVV)、门静脉流量(PVF)和脾静脉直径(SVD)。多因素逻辑回归分析显示,所有7个预测变量均具有预测价值(<0.05)。根据预测变量,构建了PVST病例的诊断模型和预测列线图。预测模型在开发集中获得的ROC曲线下AUC为0.812(95%CI:0.756-0.869),在验证集中为0.839(95%CI:0.756-0.921)。Hosmer-Lemeshow拟合优度检验拟合良好(开发集=0.858;验证集=0.137)。DCA结果表明列线图模型在临床上具有实用性。PVST三个部位的36个月生存率与一个部位(=0.047)和两个部位(=0.023)的生存率有显著差异。

结论

所提出的基于列线图的预测模型可以预测术后PVST。同时,对于PVST三个部位应尽早进行干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/9996067/ff2badf8f999/fmed-10-1103223-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验