文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

开发并验证了一种快速且易于操作的即时侧向流动免疫分析法(LFIA),用于检测 SARS-CoV-2 刺突蛋白。

Development and validation of a rapid and easy-to-perform point-of-care lateral flow immunoassay (LFIA) for the detection of SARS-CoV-2 spike protein.

机构信息

American Type Culture Collection, Manassas, VA, United States.

出版信息

Front Immunol. 2023 Feb 23;14:1111644. doi: 10.3389/fimmu.2023.1111644. eCollection 2023.


DOI:10.3389/fimmu.2023.1111644
PMID:36911726
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9995903/
Abstract

Development and validation of rapid and easy-to-perform diagnostics continue to be a high priority during the current COVID-19 pandemic. Although vaccines are now widely available, early detection and consistent transmission control provide ideal means to mitigate the spread of SARS-CoV-2. Nucleic acid-based real-time PCR tests are widely acknowledged as the gold standard for reliable diagnosis of COVID-19 infection. These tests are based on detecting viable or nonviable viral nucleic acids. SARS-CoV-2 spike protein is an alternative and ideal target for SARS-CoV-2 diagnosis in the early phase of infection, but point-of-care kits to detect the SARS-CoV-2 spike protein are limited. Here we describe a rapid and convenient method based on Lateral Flow Immunoassay (LFIA) to detect SARS-CoV-2 spike proteins, including SARS-CoV-2 variants (A.23.1, B.1.1.1, 1.617.2, B.1.1.7, B.1.351, P.1, N501Y, R.1, P681H, P3, UK, and South African) within 5 to 10 minutes. We generated highly specific monoclonal antibodies (mAbs) against rationally designed SARS-CoV-2 spike protein. Matched pair mAbs were selected by epitope mapping and employed as antigen capture reagents by spotting onto a nitrocellulose membrane and as detector reagents by conjugation with colloidal gold nanoparticles. We evaluated the performance of the LFIA using recombinant spike proteins of SARS-CoV-2 and several SARS-CoV-2 variants. The specificity of the LFIA was assessed using heat-inactivated SARS-CoV-2 and related human coronaviruses (HCoV-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63) and an FDA-approved respiratory pathogens (RP) panel. The assay exhibited 98% specificity and acceptable performance with respect to the minimum limit of detection (25 ng/test) in validation tests. This new LFIA provides improved performance for the early diagnosis of SARS-CoV-2, particularly for home monitoring and in situations with limited access to molecular methods.

摘要

在当前的 COVID-19 大流行期间,开发和验证快速且易于执行的诊断方法仍然是当务之急。虽然疫苗现在已经广泛可用,但早期检测和持续的传播控制是减轻 SARS-CoV-2 传播的理想手段。基于核酸的实时 PCR 检测被广泛认为是 COVID-19 感染可靠诊断的金标准。这些测试基于检测有活力或无活力的病毒核酸。SARS-CoV-2 刺突蛋白是感染早期 SARS-CoV-2 诊断的另一种理想靶标,但用于检测 SARS-CoV-2 刺突蛋白的即时检测试剂盒有限。在这里,我们描述了一种基于侧向流动免疫分析(LFIA)的快速简便的方法,用于检测 SARS-CoV-2 刺突蛋白,包括 SARS-CoV-2 变体(A.23.1、B.1.1.1、1.617.2、B.1.1.7、B.1.351、P.1、N501Y、R.1、P681H、P3、UK 和南非),在 5 到 10 分钟内完成。我们针对合理设计的 SARS-CoV-2 刺突蛋白生成了高度特异性的单克隆抗体(mAb)。通过表位作图选择配对的 mAb,并将其作为抗原捕获试剂点样在硝酸纤维素膜上,作为检测试剂与胶体金纳米颗粒偶联。我们使用 SARS-CoV-2 的重组刺突蛋白和几种 SARS-CoV-2 变体来评估 LFIA 的性能。通过热灭活 SARS-CoV-2 和相关的人类冠状病毒(HCoV-OC43、HCoV-229E、HCoV-HKU1 和 HCoV-NL63)和 FDA 批准的呼吸道病原体(RP)面板评估 LFIA 的特异性。该测定在验证测试中具有 98%的特异性和可接受的最低检测限(25ng/test)性能。这种新的 LFIA 为 SARS-CoV-2 的早期诊断提供了更好的性能,特别是在家庭监测和分子方法获取受限的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/cc54483fce11/fimmu-14-1111644-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/f5eafa0e9488/fimmu-14-1111644-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/1b09ee6caffd/fimmu-14-1111644-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/c2b080694e5c/fimmu-14-1111644-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/21f3455a3909/fimmu-14-1111644-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/088aef305881/fimmu-14-1111644-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/03e988320fbf/fimmu-14-1111644-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/c56f90d1693c/fimmu-14-1111644-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/445aebaf907d/fimmu-14-1111644-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/fe17bfd0af32/fimmu-14-1111644-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/bcbd5eb816d5/fimmu-14-1111644-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/870e6f0d1ebc/fimmu-14-1111644-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/cc54483fce11/fimmu-14-1111644-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/f5eafa0e9488/fimmu-14-1111644-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/1b09ee6caffd/fimmu-14-1111644-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/c2b080694e5c/fimmu-14-1111644-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/21f3455a3909/fimmu-14-1111644-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/088aef305881/fimmu-14-1111644-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/03e988320fbf/fimmu-14-1111644-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/c56f90d1693c/fimmu-14-1111644-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/445aebaf907d/fimmu-14-1111644-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/fe17bfd0af32/fimmu-14-1111644-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/bcbd5eb816d5/fimmu-14-1111644-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/870e6f0d1ebc/fimmu-14-1111644-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/9995903/cc54483fce11/fimmu-14-1111644-g012.jpg

相似文献

[1]
Development and validation of a rapid and easy-to-perform point-of-care lateral flow immunoassay (LFIA) for the detection of SARS-CoV-2 spike protein.

Front Immunol. 2023

[2]
A novel rapid detection for SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2).

Biosens Bioelectron. 2020-10-15

[3]
Simultaneous Detection of SARS-CoV-2 IgG/IgM Antibodies, Using Gold Nanoparticles-Based Lateral Flow Immunoassay.

Monoclon Antib Immunodiagn Immunother. 2021-10

[4]
Comparative evaluation of RT-PCR and antigen-based rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 detection: performance, variant specificity, and clinical implications.

Microbiol Spectr. 2024-6-4

[5]
Ultrasensitive and Simultaneous Detection of Two Specific SARS-CoV-2 Antigens in Human Specimens Using Direct/Enrichment Dual-Mode Fluorescence Lateral Flow Immunoassay.

ACS Appl Mater Interfaces. 2021-9-1

[6]
Validation of a quantitative lateral flow immunoassay (LFIA)-based point-of-care (POC) rapid test for SARS-CoV-2 neutralizing antibodies.

Arch Virol. 2022-5

[7]
Gold nanoparticle conjugate-based lateral flow immunoassay (LFIA) for rapid detection of RBD antigen of SARS-CoV-2 in clinical samples using a smartphone-based application.

J Med Virol. 2023-1

[8]
Next-Generation Rapid and Ultrasensitive Lateral Flow Immunoassay for Detection of SARS-CoV-2 Variants.

ACS Sens. 2023-10-27

[9]
Lateral Flow Immunoassay of SARS-CoV-2 Antigen with SERS-Based Registration: Development and Comparison with Traditional Immunoassays.

Biosensors (Basel). 2021-12-10

[10]
Evaluation of a multiplexed coronavirus antigen array for detection of SARS-CoV-2 specific IgG in COVID-19 convalescent plasma.

J Immunol Methods. 2021-10

引用本文的文献

[1]
Current and future opportunities for lateral flow immunoassay strips based on tunable plasmonic properties of gold nanoparticles.

Mikrochim Acta. 2025-7-12

[2]
Aptamer Paper-Based Fluorescent Sensor for Determination of SARS-CoV-2 Spike Protein.

Sensors (Basel). 2025-3-7

[3]
Antibody-labelled gold nanoparticles synthesized by laser ablation to detect SARS-CoV-2 antigen spike.

ADMET DMPK. 2023-12-6

本文引用的文献

[1]
Detection of SARS-CoV-2 nucleocapsid antigen from serum can aid in timing of COVID-19 infection.

J Virol Methods. 2022-4

[2]
Transmission Dynamics of an Outbreak of the COVID-19 Delta Variant B.1.617.2 - Guangdong Province, China, May-June 2021.

China CDC Wkly. 2021-7-2

[3]
SARS-CoV-2 variants, spike mutations and immune escape.

Nat Rev Microbiol. 2021-7

[4]
Evaluation of PCL rapid point of care antigen test for detection of SARS-CoV-2 in nasopharyngeal swabs.

J Med Virol. 2021-4

[5]
Human Monoclonal Antibodies: On the Menu of Targeted Therapeutics Against COVID-19.

Virol Sin. 2020-12

[6]
The Main Molecular and Serological Methods for Diagnosing COVID-19: An Overview Based on the Literature.

Viruses. 2020-12-29

[7]
Lessons learnt from easing COVID-19 restrictions: an analysis of countries and regions in Asia Pacific and Europe.

Lancet. 2020-9-24

[8]
Current approaches in laboratory testing for SARS-CoV-2.

Int J Infect Dis. 2020-8-21

[9]
Laboratory diagnosis of SARS-CoV-2: available approaches and limitations.

New Microbes New Infect. 2020-6-14

[10]
A serological assay to detect SARS-CoV-2 seroconversion in humans.

Nat Med. 2020-5-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索