Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China.
Network and Information Center, Shantou University, Shantou, Guangdong, China.
Asia Pac J Ophthalmol (Phila). 2023;12(3):284-292. doi: 10.1097/APO.0000000000000599. Epub 2023 Feb 20.
To establish a multilabel-based deep learning (DL) algorithm for automatic detection and categorization of clinically significant peripheral retinal lesions using ultrawide-field fundus images.
A total of 5958 ultrawide-field fundus images from 3740 patients were randomly split into a training set, validation set, and test set. A multilabel classifier was developed to detect rhegmatogenous retinal detachment, cystic retinal tuft, lattice degeneration, and retinal breaks. Referral decision was automatically generated based on the results of each disease class. t -distributed stochastic neighbor embedding heatmaps were used to visualize the features extracted by the neural networks. Gradient-weighted class activation mapping and guided backpropagation heatmaps were generated to investigate the image locations for decision-making by the DL models. The performance of the classifier(s) was evaluated by sensitivity, specificity, accuracy, F 1 score, area under receiver operating characteristic curve (AUROC) with 95% CI, and area under the precision-recall curve.
In the test set, all categories achieved a sensitivity of 0.836-0.918, a specificity of 0.858-0.989, an accuracy of 0.854-0.977, an F 1 score of 0.400-0.931, an AUROC of 0.9205-0.9882, and an area under the precision-recall curve of 0.6723-0.9745. The referral decisions achieved an AUROC of 0.9758 (95% CI= 0.9648-0.9869). The multilabel classifier had significantly better performance in cystic retinal tuft detection than the binary classifier (AUROC= 0.9781 vs 0.6112, P < 0.001). The model showed comparable performance with human experts.
This new DL model of a multilabel classifier is capable of automatic, accurate, and early detection of clinically significant peripheral retinal lesions with various sample sizes. It can be applied in peripheral retinal screening in clinics.
利用超广角眼底图像建立一种基于多标签的深度学习(DL)算法,用于自动检测和分类临床意义重大的周边视网膜病变。
将 3740 名患者的 5958 张超广角眼底图像随机分为训练集、验证集和测试集。开发了一种多标签分类器来检测孔源性视网膜脱离、囊性视网膜簇、格子样变性和视网膜裂孔。根据每个疾病类别的结果自动生成转诊决策。使用 t 分布随机邻域嵌入热图来可视化神经网络提取的特征。生成梯度加权类激活映射和引导反向传播热图,以研究 DL 模型做出决策的图像位置。通过敏感性、特异性、准确性、F1 分数、95%置信区间下的接收器工作特征曲线下面积(AUROC)和精度-召回曲线下面积来评估分类器的性能。
在测试集中,所有类别均达到了 0.836-0.918 的敏感性、0.858-0.989 的特异性、0.854-0.977 的准确性、0.400-0.931 的 F1 分数、0.9205-0.9882 的 AUROC 和 0.6723-0.9745 的精度-召回曲线下面积。转诊决策的 AUROC 为 0.9758(95%置信区间=0.9648-0.9869)。与二分类器相比,多标签分类器在囊性视网膜簇检测方面具有明显更好的性能(AUROC=0.9781 与 0.6112,P<0.001)。该模型与人类专家的表现相当。
这种新的基于多标签的深度学习模型分类器能够自动、准确、早期检测具有各种样本量的临床意义重大的周边视网膜病变。它可以应用于临床中的周边视网膜筛查。