Suppr超能文献

超广角眼底摄影及基于人工智能的多种眼底疾病筛查与转诊

Ultra-wide-field fundus photography and AI-based screening and referral for multiple ocular fundus diseases.

作者信息

Zhao Xinyu, Gu Xingwang, Teng Da, Sun Xiaolei, Wei Qijie, Wang Bo, Wang Jinrui, Zhao Jianchun, Ding Dayong, Zhang Bilei, Wang Yuelin, Zhang Wenfei, Cheng Shiyu, Liu Xinyu, Meng Lihui, Li Bing, Zhang Xiao, Shi Zhengming, Liang Anyi, Jiao Guofang, Lu Huiqin, Chen Changzheng, Ahmat Rishet, Zhang Hao, Li Yakun, Zhu Dan, Zhang Han, Lv Hongbin, Zhang Donglei, Li Mengda, Zhang Ziwu, Yuan Ling, Su Chang, Sun Dawei, Li Qiuming, Xiao Dawa, Chen Youxin

机构信息

Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China and Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China.

Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.

出版信息

Cell Rep Med. 2025 Jun 17;6(6):102187. doi: 10.1016/j.xcrm.2025.102187. Epub 2025 Jun 10.

Abstract

To address the difficulty in comprehensive screening of fundus diseases, we develop three deep learning algorithms (DLAs) based on different algorithms (Swin Transformer and cross-domain collaborative learning [CdCL]) and imaging modalities (ultra-wide-field [UWF] images and the cropped posterior-pole-region [PPR] images) to identify 25 fundus conditions and provide referral suggestions: WARM (CdCL + UWF images), BASE (Swin Transformer + UWF images), and WARM-PPR (CdCL + PPR images). 59,475 UWF images are included to establish internal and external datasets. WARM shows the best performance on the internal test (area under the receiver operating characteristic curve [AUC] for screening = 0.915; AUC for referral = 0.911) and the external multi-center test (AUC for screening = 0.912; AUC for referral = 0.902). UWF images and the CdCL approach significantly enhance the DLA's ability to detect abnormalities in the peripheral retina. The WARM model shows promise as a reliable and accurate tool for comprehensive fundus screening on a large scale.

摘要

为解决眼底疾病全面筛查的难题,我们基于不同算法(Swin Transformer和跨域协作学习[CdCL])及成像模式(超广角[UWF]图像和裁剪后的后极部区域[PPR]图像)开发了三种深度学习算法(DLA),以识别25种眼底病症并提供转诊建议:WARM(CdCL + UWF图像)、BASE(Swin Transformer + UWF图像)和WARM-PPR(CdCL + PPR图像)。纳入59475张UWF图像以建立内部和外部数据集。WARM在内部测试(筛查的受试者操作特征曲线下面积[AUC]=0.915;转诊的AUC = 0.911)和外部多中心测试(筛查的AUC = 0.912;转诊的AUC = 0.902)中表现最佳。UWF图像和CdCL方法显著增强了DLA检测周边视网膜异常的能力。WARM模型有望成为大规模全面眼底筛查的可靠且准确的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3353/12208325/ce17ec196956/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验