Suppr超能文献

利用超广角眼底图像开发用于检测格子样变性、视网膜裂孔和视网膜脱离的深度学习系统:一项初步研究。

Development of a deep-learning system for detection of lattice degeneration, retinal breaks, and retinal detachment in tessellated eyes using ultra-wide-field fundus images: a pilot study.

机构信息

Department of Ophthalmology, Key Laboratory of Ocular Fundus Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.

Vistel AI Lab, Visionary Intelligence Ltd, Beijing, China.

出版信息

Graefes Arch Clin Exp Ophthalmol. 2021 Aug;259(8):2225-2234. doi: 10.1007/s00417-021-05105-3. Epub 2021 Feb 4.

Abstract

PURPOSE

To investigate the detection of lattice degeneration, retinal breaks, and retinal detachment in tessellated eyes using ultra-wide-field fundus imaging system (Optos) with convolutional neural network technology.

METHODS

This study included 1500 Optos color images for tessellated fundus confirmation and peripheral retinal lesion (lattice degeneration, retinal breaks, and retinal detachment) assessment. Three retinal specialists evaluated all images and proposed the reference standard when an agreement was achieved. Then, 722 images were used to train and verify a combined deep-learning system of 3 optimal binary classification models trained using seResNext50 algorithm with 2 preprocessing methods (original resizing and cropping), and a test set of 189 images were applied to verify the performance compared to the reference standard.

RESULTS

With optimal preprocessing approach (original resizing method for lattice degeneration and retinal detachment, cropping method for retinal breaks), the combined deep-learning system exhibited an area under curve of 0.888, 0.953, and 1.000 for detection of lattice degeneration, retinal breaks, and retinal detachment respectively in tessellated eyes. The referral accuracy of this system was 79.8% compared to the reference standard.

CONCLUSION

A deep-learning system is feasible to detect lattice degeneration, retinal breaks, and retinal detachment in tessellated eyes using ultra-wide-field images. And this system may be considered for screening and telemedicine.

摘要

目的

利用超广角眼底成像系统(Optos)和卷积神经网络技术,研究棋盘格眼的格子样变性、视网膜裂孔和视网膜脱离的检测。

方法

本研究纳入了 1500 张 Optos 彩图,用于确认棋盘格眼底和评估周边视网膜病变(格子样变性、视网膜裂孔和视网膜脱离)。三位视网膜专家评估了所有图像,并在达成一致意见时提出了参考标准。然后,使用 seResNext50 算法训练的 3 个最佳二进制分类模型的联合深度学习系统,以及两种预处理方法(原始调整大小和裁剪),对 722 张图像进行了训练和验证,并将 189 张测试集图像应用于与参考标准进行比较,以验证其性能。

结果

在最佳预处理方法(格子样变性和视网膜脱离的原始调整大小方法,视网膜裂孔的裁剪方法)下,联合深度学习系统在检测棋盘格眼中的格子样变性、视网膜裂孔和视网膜脱离时,曲线下面积分别为 0.888、0.953 和 1.000。与参考标准相比,该系统的转诊准确率为 79.8%。

结论

深度学习系统可用于使用超广角图像检测棋盘格眼中的格子样变性、视网膜裂孔和视网膜脱离。该系统可用于筛查和远程医疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验