Suppr超能文献

将生物医学肌肉组织工程再用于细胞农业:挑战与机遇。

Repurposing biomedical muscle tissue engineering for cellular agriculture: challenges and opportunities.

机构信息

Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA.

Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA.

出版信息

Trends Biotechnol. 2023 Jul;41(7):887-906. doi: 10.1016/j.tibtech.2023.02.002. Epub 2023 Mar 11.

Abstract

Cellular agriculture is an emerging field rooted in engineering meat-mimicking cell-laden structures using tissue engineering practices that have been developed for biomedical applications, including regenerative medicine. Research and industrial efforts are focused on reducing the cost and improving the throughput of cultivated meat (CM) production using these conventional practices. Due to key differences in the goals of muscle tissue engineering for biomedical versus food applications, conventional strategies may not be economically and technologically viable or socially acceptable. In this review, these two fields are critically compared, and the limitations of biomedical tissue engineering practices in achieving the important requirements of food production are discussed. Additionally, the possible solutions and the most promising biomanufacturing strategies for cellular agriculture are highlighted.

摘要

细胞农业是一个新兴领域,其基础是使用组织工程实践来构建模拟肉类的细胞结构,这些实践已经为生物医学应用(包括再生医学)所开发。研究和工业界的重点是通过这些传统实践来降低培养肉(CM)生产的成本并提高产量。由于生物医学和食品应用的肌肉组织工程目标存在关键差异,因此传统策略在经济和技术上可能不可行或在社会上不可接受。在这篇综述中,对这两个领域进行了批判性比较,并讨论了生物医学组织工程实践在实现食品生产的重要要求方面的局限性。此外,还强调了细胞农业的可能解决方案和最有前途的生物制造策略。

相似文献

1
Repurposing biomedical muscle tissue engineering for cellular agriculture: challenges and opportunities.
Trends Biotechnol. 2023 Jul;41(7):887-906. doi: 10.1016/j.tibtech.2023.02.002. Epub 2023 Mar 11.
2
Bioengineering Outlook on Cultivated Meat Production.
Micromachines (Basel). 2022 Feb 28;13(3):402. doi: 10.3390/mi13030402.
4
Advancing our understanding of bioreactors for industrial-sized cell culture: health care and cellular agriculture implications.
Am J Physiol Cell Physiol. 2023 Sep 1;325(3):C580-C591. doi: 10.1152/ajpcell.00408.2022. Epub 2023 Jul 24.
5
Regenerative pharmacology: the future is now.
Mol Interv. 2007 Apr;7(2):79-86. doi: 10.1124/mi.7.2.8.
6
Prospects and challenges for cell-cultured fat as a novel food ingredient.
Trends Food Sci Technol. 2020 Apr;98:53-67. doi: 10.1016/j.tifs.2020.02.005. Epub 2020 Feb 11.
7
Tooth regeneration: challenges and opportunities for biomedical material research.
Biomed Mater. 2006 Mar;1(1):R10-7. doi: 10.1088/1748-6041/1/1/R02. Epub 2006 Mar 1.
8
A scoping review of cultivated meat techno-economic analyses to inform future research directions for scaled-up manufacturing.
Nat Food. 2024 Nov;5(11):901-910. doi: 10.1038/s43016-024-01061-3. Epub 2024 Oct 18.
9
Integrating biomaterials and food biopolymers for cultured meat production.
Acta Biomater. 2021 Apr 1;124:108-129. doi: 10.1016/j.actbio.2021.01.017. Epub 2021 Jan 17.
10
Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges.
Adv Sci (Weinh). 2022 Jan;9(3):e2102908. doi: 10.1002/advs.202102908. Epub 2021 Nov 16.

引用本文的文献

1
Scaffold Biomaterials in the Development of Cultured Meat: A Review.
Food Sci Anim Resour. 2025 May;45(3):688-710. doi: 10.5851/kosfa.2025.e13. Epub 2025 May 1.
2
Biodegradable Oxygen-Generating Microneedle Patches for Regenerative Medicine Applications.
Adv Nanobiomed Res. 2025 Jan;5(1):2400093. doi: 10.1002/anbr.202400093. Epub 2024 Nov 27.
3
Establishment and characterization of hTERT-immortalized porcine muscle stem cells, and their prospective uses.
Food Sci Biotechnol. 2024 Dec 11;34(7):1597-1604. doi: 10.1007/s10068-024-01785-9. eCollection 2025 Apr.
4
A Review on the Application of Animal-Based Materials Using Three-Dimensional (3D) Printing and Protein Restructuring Technologies.
Food Sci Anim Resour. 2025 Jan;45(1):282-302. doi: 10.5851/kosfa.2024.e132. Epub 2025 Jan 1.
6
Laminin as a Key Extracellular Matrix for Proliferation, Differentiation, and Maturation of Porcine Muscle Stem Cell Cultivation.
Food Sci Anim Resour. 2024 May;44(3):710-722. doi: 10.5851/kosfa.2024.e27. Epub 2024 May 1.
8
Biofabrication's Contribution to the Evolution of Cultured Meat.
Adv Healthc Mater. 2024 May;13(13):e2304058. doi: 10.1002/adhm.202304058. Epub 2024 Feb 17.

本文引用的文献

2
3D-Printed Prolamin Scaffolds for Cell-Based Meat Culture.
Adv Mater. 2023 Jan;35(2):e2207397. doi: 10.1002/adma.202207397. Epub 2022 Nov 27.
4
Tailoring a Gelatin/Agar Matrix for the Synergistic Effect with Cells to Produce High-Quality Cultured Meat.
ACS Appl Mater Interfaces. 2022 Aug 24;14(33):38235-38245. doi: 10.1021/acsami.2c10988. Epub 2022 Aug 14.
5
Production of cultured meat by culturing porcine smooth muscle cells in vitro with food grade peanut wire-drawing protein scaffold.
Food Res Int. 2022 Sep;159:111561. doi: 10.1016/j.foodres.2022.111561. Epub 2022 Jun 23.
6
Production of cultured meat from pig muscle stem cells.
Biomaterials. 2022 Aug;287:121650. doi: 10.1016/j.biomaterials.2022.121650. Epub 2022 Jul 18.
7
Emulsion-templated microparticles with tunable stiffness and topology: Applications as edible microcarriers for cultured meat.
Biomaterials. 2022 Aug;287:121669. doi: 10.1016/j.biomaterials.2022.121669. Epub 2022 Jul 12.
8
Bioengineered Lab-Grown Meat-like Constructs through 3D Bioprinting of Antioxidative Protein Hydrolysates.
ACS Appl Mater Interfaces. 2022 Aug 3;14(30):34513-34526. doi: 10.1021/acsami.2c10620. Epub 2022 Jul 18.
9
Edible films for cultivated meat production.
Biomaterials. 2022 Aug;287:121659. doi: 10.1016/j.biomaterials.2022.121659. Epub 2022 Jul 6.
10
Harvest of quality-controlled bovine myogenic cells and biomimetic bovine muscle tissue engineering for sustainable meat production.
Biomaterials. 2022 Aug;287:121649. doi: 10.1016/j.biomaterials.2022.121649. Epub 2022 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验