Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China.
Small Methods. 2023 Jun;7(6):e2201548. doi: 10.1002/smtd.202201548. Epub 2023 Mar 13.
Cell membrane-cloaked nanoparticles are exploited as a promising drug carrier to enhance circulation, accumulation, penetration into tumor sites and cellular internalization. However, the effect of physicochemical properties (e.g., size, surface charge, shape, and elasticity) of cell membrane-cloaked nanoparticles on nano-bio interaction is rarely studied. In the present study, keeping the other parameters constant, erythrocyte membrane (EM)-cloaked nanoparticles (nanoEMs) with different Young's moduli are fabricated by altering different kinds of nano-core (i.e., aqueous phase core, gelatin nanoparticles, and platinum nanoparticles). The designed nanoEMs are used to investigate the effect of nanoparticle elasticity on nano-bio interaction including cellular internalization, tumor penetration, biodistribution, blood circulation, and so on. The results demonstrate that the nanoEMs with intermediate elasticity (≈95 MPa) have a relatively higher increase in cellular internalization and inhibition of tumor cells migration than the soft (≈11 MPa) and stiff (≈173 MPa) ones. Furthermore, in vivo studies show that nanoEMs with intermediate elasticity preferentially accumulate and penetrate into tumor sites than the soft and stiff ones, while in circulation, softer nanoEMs show a longer blood circulation time. This work provides an insight for optimizing the design of biomimetic carriers and may further contribute to the selection of nanomaterials on biomedical application.
细胞膜包覆的纳米粒子被用作有前途的药物载体,以增强循环、积累、渗透到肿瘤部位和细胞内化。然而,细胞膜包覆的纳米粒子的物理化学性质(例如大小、表面电荷、形状和弹性)对纳米-生物相互作用的影响很少被研究。在本研究中,通过改变不同的纳米核(即水相核、明胶纳米粒子和铂纳米粒子),在保持其他参数不变的情况下,制备了具有不同杨氏模量的红细胞膜(EM)包覆的纳米粒子(nanoEMs)。设计的 nanoEMs 用于研究纳米粒子弹性对纳米-生物相互作用的影响,包括细胞内化、肿瘤穿透、生物分布、血液循环等。结果表明,具有中等弹性(≈95 MPa)的 nanoEMs 比柔软的(≈11 MPa)和坚硬的(≈173 MPa) nanoEMs 具有更高的细胞内化和抑制肿瘤细胞迁移的能力。此外,体内研究表明,具有中等弹性的 nanoEMs 比柔软和坚硬的 nanoEMs 更优先聚集和渗透到肿瘤部位,而在循环中,较软的 nanoEMs 表现出更长的血液循环时间。这项工作为优化仿生载体的设计提供了深入的了解,并可能进一步有助于选择纳米材料在生物医学应用中的应用。