Suppr超能文献

纳米机械免疫工程:通过压电蛋白 1 重塑肿瘤相关巨噬细胞的纳米颗粒弹性。

Nano-mechanical Immunoengineering: Nanoparticle Elasticity Reprograms Tumor-Associated Macrophages via Piezo1.

机构信息

Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China.

Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.

出版信息

ACS Nano. 2024 Aug 13;18(32):21221-21235. doi: 10.1021/acsnano.4c04614. Epub 2024 Jul 30.

Abstract

The mechanical properties of nanoparticles play a crucial role in regulating nanobiointeractions, influencing processes such as blood circulation, tumor accumulation/penetration, and internalization into cancer cells. Consequently, they have a significant impact on drug delivery and therapeutic efficacy. However, it remains unclear whether and how macrophages alter their biological function in response to nanoparticle elasticity. Here, we report on the nano-mechanical biological effects resulting from the interactions between elastic silica nanoparticles (SNs) and macrophages. The SNs with variational elasticity Young's moduli ranging from 81 to 837 MPa were synthesized, and it was demonstrated that M2 [tumor-associated macrophages (TAMs)] could be repolarized to M1 by the soft SNs. Additionally, our findings revealed that cell endocytosis, membrane tension, the curvature protein Baiap2, and the cytoskeleton were all influenced by the elasticity of SNs. Moreover, the mechanically sensitive protein Piezo1 on the cell membrane was activated, leading to calcium ion influx, activation of the NF-κB pathway, and the initiation of an inflammatory response. In vivo experiments demonstrated that the softest 81 MPa SNs enhanced tumor penetration and accumulation and repolarized TAMs in intratumoral hypoxic regions, ultimately resulting in a significant inhibition of tumor growth. Taken together, this study has established a cellular feedback mechanism in response to nanoparticle elasticity, which induces plasma membrane deformation and subsequent activation of mechanosensitive signals. This provides a distinctive "nano-mechanical immunoengineering" strategy for reprogramming TAMs to enhance cancer immunotherapy.

摘要

纳米颗粒的力学性能在调控纳米生物相互作用中起着至关重要的作用,影响着血液循环、肿瘤积累/渗透以及进入癌细胞的内化等过程。因此,它们对药物输送和治疗效果有重大影响。然而,目前尚不清楚巨噬细胞是否以及如何改变其生物学功能以响应纳米颗粒的弹性。在这里,我们报告了弹性二氧化硅纳米颗粒(SNs)与巨噬细胞相互作用产生的纳米力学生物学效应。合成了具有从 81 MPa 到 837 MPa 变化的弹性杨氏模量的 SNs,并证明了软 SNs 可以将 M2 [肿瘤相关巨噬细胞(TAMs)] 重极化到 M1。此外,我们的研究结果表明,细胞内吞作用、膜张力、曲率蛋白 Baiap2 和细胞骨架都受到 SNs 弹性的影响。此外,细胞膜上的机械敏感蛋白 Piezo1 被激活,导致钙离子内流、NF-κB 途径的激活和炎症反应的启动。体内实验表明,最软的 81 MPa SNs 增强了肿瘤的穿透和积累,并在肿瘤缺氧区域重极化 TAMs,最终显著抑制了肿瘤生长。总之,本研究建立了一种细胞反馈机制,以响应纳米颗粒的弹性,诱导质膜变形和随后的机械敏感信号的激活。这为重新编程 TAMs 以增强癌症免疫治疗提供了一种独特的“纳米力学免疫工程”策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验