School of Computing Mathematics and Engineering, Charles Sturt University, Bathurst, NSW, 2795, Australia.
Sci Rep. 2023 Mar 13;13(1):4129. doi: 10.1038/s41598-023-30575-2.
In recent years, quantum image computing draws a lot of attention due to storing and processing image data faster compared to classical computers. A number of approaches have been proposed to represent the quantum image inside a quantum computer. Representing and compressing medium and big-size images inside the quantum computer is still challenging. To address this issue, we have proposed a block-wise DCT-EFRQI (Direct Cosine Transform Efficient Flexible Representation of Quantum Image) approach to represent and compress the gray-scale image efficiently to save computational time and reduce the quantum bits (qubits) for the state preparation. In this work, we have demonstrated the capability of block-wise DCT and DWT transformation inside the quantum domain to investigate their relative performances. The Quirk simulation tool is used to design the corresponding quantum image circuit. In the proposed DCT-EFRQI approach, a total of 17 qubits are used to represent the coefficients, the connection between coefficients and state (i.e., auxiliary), and their position for representing and compressing grayscale images inside a quantum computer. Among those, 8 qubits are used to map the coefficient values and the rest are used to generate the corresponding coefficient XY-coordinate position including one auxiliary qubit. Theoretical analysis and experimental results show that the proposed DCT-EFRQI scheme provides better representation and compression compared to DCT-GQIR, DWT-GQIR, and DWT-EFRQI in terms of rate-distortion performance.
近年来,由于量子计算机在存储和处理图像数据方面比经典计算机更快,因此量子图像计算引起了广泛关注。已经提出了许多方法来在量子计算机中表示量子图像。在量子计算机中表示和压缩中等和大尺寸的图像仍然具有挑战性。为了解决这个问题,我们提出了一种分块 DCT-EFRQI(量子图像的直接余弦变换高效灵活表示)方法,以有效地表示和压缩灰度图像,从而节省计算时间并减少量子位(qubit)用于状态准备。在这项工作中,我们演示了量子域中分块 DCT 和 DWT 变换的能力,以研究它们的相对性能。使用 Quirk 模拟工具来设计相应的量子图像电路。在提出的 DCT-EFRQI 方法中,总共使用 17 个量子位来表示系数、系数与状态(即辅助)之间的连接以及它们在量子计算机中表示和压缩灰度图像的位置。其中,8 个量子位用于映射系数值,其余的用于生成相应的系数 XY 坐标位置,包括一个辅助量子位。理论分析和实验结果表明,与 DCT-GQIR、DWT-GQIR 和 DWT-EFRQI 相比,所提出的 DCT-EFRQI 方案在率失真性能方面提供了更好的表示和压缩效果。