Data Analytics and Imaging, Pharma Personalized Healthcare, Genentech Inc., 600 E Grand Ave., South San Francisco, CA, 94080, USA.
Clinical Imaging Group, gRED, Genentech Inc., South San Francisco, CA, USA.
Sci Rep. 2023 Mar 13;13(1):4102. doi: 10.1038/s41598-023-31207-5.
T2 lesion quantification plays a crucial role in monitoring disease progression and evaluating treatment response in multiple sclerosis (MS). We developed a 3D, multi-arm U-Net for T2 lesion segmentation, which was trained on a large, multicenter clinical trial dataset of relapsing MS. We investigated its generalization to other relapsing and primary progressive MS clinical trial datasets, and to an external dataset from the MICCAI 2016 MS lesion segmentation challenge. Additionally, we assessed the model's ability to reproduce the separation of T2 lesion volumes between treatment and control arms; and the association of baseline T2 lesion volumes with clinical disability scores compared with manual lesion annotations. The trained model achieved a mean dice coefficient of ≥ 0.66 and a lesion detection sensitivity of ≥ 0.72 across the internal test datasets. On the external test dataset, the model achieved a mean dice coefficient of 0.62, which is comparable to 0.59 from the best model in the challenge, and a lesion detection sensitivity of 0.68. Lesion detection performance was reduced for smaller lesions (≤ 30 μL, 3-10 voxels). The model successfully maintained the separation of the longitudinal changes in T2 lesion volumes between the treatment and control arms. Such tools could facilitate semi-automated MS lesion quantification; and reduce rater burden in clinical trials.
T2 病灶定量在多发性硬化症(MS)的疾病进展监测和治疗反应评估中起着至关重要的作用。我们开发了一种用于 T2 病灶分割的 3D 多臂 U-Net,它是在大型多中心复发型 MS 临床试验数据集上进行训练的。我们研究了它对其他复发型和原发性进展型 MS 临床试验数据集以及 MICCAI 2016 MS 病灶分割挑战赛的外部数据集的泛化能力。此外,我们评估了模型在复制治疗组和对照组之间 T2 病灶体积分离的能力,以及与手动病灶标注相比,基线 T2 病灶体积与临床残疾评分之间的相关性。在内部测试数据集上,训练后的模型的平均骰子系数≥0.66,病灶检测灵敏度≥0.72。在外部测试数据集上,该模型的平均骰子系数为 0.62,与挑战赛中最佳模型的 0.59相当,病灶检测灵敏度为 0.68。对于较小的病灶(≤30μL,3-10 个体素),病灶检测性能会降低。该模型成功地保持了治疗组和对照组之间 T2 病灶体积纵向变化的分离。此类工具可以促进半自动化 MS 病灶定量,并减少临床试验中的评分者负担。