Suppr超能文献

站立渗透梯度是脑脊液产生的主要驱动力吗?一项计算分析。

Are standing osmotic gradients the main driver of cerebrospinal fluid production? A computational analysis.

机构信息

The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.

Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.

出版信息

Fluids Barriers CNS. 2023 Mar 13;20(1):18. doi: 10.1186/s12987-023-00419-2.

Abstract

BACKGROUND

The mechanisms of cerebrospinal fluid (CSF) production by the ventricular choroid plexus (ChP) have not been fully deciphered. One prominent hypothesized mechanism is trans-epithelial water transport mediated by accumulation of solutes at the luminal ChP membrane that produces local osmotic gradients. However, this standing osmotic gradient hypothesis has not been systematically tested.

METHODS

To assess the plausibility of the standing gradient mechanism serving as the main driver of CSF production by the ChP, we developed a three-dimensional (3D) and a one-dimensional (1D) computational model to quantitatively describe the associated processes in the rat ChP inter-microvillar spaces and in CSF pools between macroscopic ChP folds (1D only). The computationally expensive 3D model was used to examine the applicability of the 1D model for hypothesis testing. The 1D model was employed to predict the rate of CSF produced by the standing gradient mechanism for 200,000 parameter permutations. Model parameter values for each permutation were chosen by random sampling from distributions derived from published experimental data.

RESULTS

Both models predict that the CSF production rate by the standing osmotic gradient mechanism is below 10% of experimentally measured values that reflect the contribution of all actual production mechanisms. The 1D model indicates that increasing the size of CSF pools between ChP folds, where diffusion dominates solute transport, would increase the contribution of the standing gradient mechanism to CSF production.

CONCLUSIONS

The models suggest that the effect of standing osmotic gradients is too small to contribute substantially to CSF production. ChP motion and movement of CSF in the ventricles, which are not accounted for in the models, would further reduce this effect, making it unlikely that standing osmotic gradients are the main drivers of CSF production.

摘要

背景

脑室脉络丛(ChP)产生脑脊液(CSF)的机制尚未完全阐明。一个突出的假设机制是溶质在脉络丛腔膜的积累介导的跨上皮水转运,从而产生局部渗透梯度。然而,这种渗透压梯度假说尚未得到系统验证。

方法

为了评估渗透压梯度机制作为 ChP 产生 CSF 的主要驱动力的合理性,我们开发了一个三维(3D)和一个一维(1D)计算模型,以定量描述大鼠 ChP 微绒毛间空间和宏观 ChP 褶皱之间 CSF 池中的相关过程(仅 1D)。计算成本较高的 3D 模型用于检验 1D 模型在假设检验中的适用性。1D 模型用于预测渗透压梯度机制产生的 CSF 速率,共进行了 20 万次参数排列。每个排列的模型参数值通过从已发表的实验数据中得出的分布进行随机抽样选择。

结果

两个模型均预测,渗透压梯度机制产生的 CSF 速率低于实验测量值的 10%,该值反映了所有实际产生机制的贡献。1D 模型表明,增加脉络丛褶皱之间 CSF 池的大小,其中扩散主导溶质转运,会增加渗透压梯度机制对 CSF 产生的贡献。

结论

模型表明,渗透压梯度的影响太小,不足以对 CSF 产生大量贡献。模型中未考虑的脉络丛运动和脑室中 CSF 的运动将进一步降低这种影响,因此渗透压梯度不太可能是 CSF 产生的主要驱动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1a6/10012606/433ae28d75ba/12987_2023_419_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验