Suppr超能文献

火星的等离子体系统。协同多点任务的科学潜力:“下一代”。

Mars' plasma system. Scientific potential of coordinated multipoint missions: "The next generation".

作者信息

Sánchez-Cano Beatriz, Lester Mark, Andrews David J, Opgenoorth Hermann, Lillis Robert, Leblanc François, Fowler Christopher M, Fang Xiaohua, Vaisberg Oleg, Mayyasi Majd, Holmberg Mika, Guo Jingnan, Hamrin Maria, Mazelle Christian, Peter Kerstin, Pätzold Martin, Stergiopoulou Katerina, Goetz Charlotte, Ermakov Vladimir Nikolaevich, Shuvalov Sergei, Wild James A, Blelly Pierre-Louis, Mendillo Michael, Bertucci Cesar, Cartacci Marco, Orosei Roberto, Chu Feng, Kopf Andrew J, Girazian Zachary, Roman Michael T

机构信息

School of Physics and Astronomy, University of Leicester, Leicester, UK.

Swedish Institute of Space Physics, Uppsala, Sweden.

出版信息

Exp Astron (Dordr). 2022;54(2-3):641-676. doi: 10.1007/s10686-021-09790-0. Epub 2021 Nov 13.

Abstract

The objective of this White Paper, submitted to ESA's Voyage 2050 call, is to get a more holistic knowledge of the dynamics of the Martian plasma system, from its surface up to the undisturbed solar wind outside of the induced magnetosphere. This can only be achieved with coordinated multi-point observations with high temporal resolution as they have the scientific potential to track the whole dynamics of the system (from small to large scales), and they constitute the next generation of the exploration of Mars analogous to what happened at Earth a few decades ago. This White Paper discusses the key science questions that are still open at Mars and how they could be addressed with coordinated multipoint missions. The main science questions are: (i) How does solar wind driving impact the dynamics of the magnetosphere and ionosphere? (ii) What is the structure and nature of the tail of Mars' magnetosphere at all scales? (iii) How does the lower atmosphere couple to the upper atmosphere? (iv) Why should we have a permanent in-situ Space Weather monitor at Mars? Each science question is devoted to a specific plasma region, and includes several specific scientific objectives to study in the coming decades. In addition, two mission concepts are also proposed based on coordinated multi-point science from a constellation of orbiting and ground-based platforms, which focus on understanding and solving the current science gaps.

摘要

本白皮书是应欧洲航天局“2050 年航行计划”征集要求提交的,其目的是更全面地了解火星等离子体系统的动力学,范围从火星表面直至感应磁层之外未受干扰的太阳风区域。这只有通过具有高时间分辨率的多点协同观测才能实现,因为这些观测具有追踪系统全动力学(从小尺度到大规模)的科学潜力,并且它们构成了火星探索的下一代方式,类似于几十年前在地球上发生的情况。本白皮书讨论了火星上仍然悬而未决的关键科学问题,以及如何通过协同多点任务来解决这些问题。主要科学问题包括:(i)太阳风驱动如何影响磁层和电离层的动力学?(ii)火星磁层尾部在所有尺度上的结构和性质是什么?(iii)低层大气与高层大气如何耦合?(iv)为什么我们应该在火星上设置一个永久性的原位空间天气监测器?每个科学问题都针对一个特定的等离子体区域,并包括未来几十年要研究的几个具体科学目标。此外,还基于来自轨道和地面平台星座的协同多点科学提出了两个任务概念,其重点是理解和解决当前的科学空白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17ec/9998566/851acb887752/10686_2021_9790_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验