Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
Small. 2023 Jun;19(23):e2207511. doi: 10.1002/smll.202207511. Epub 2023 Mar 14.
The authors report a strategic approach to achieve metallic properties from semiconducting CuFeS colloidal nanocrystal (NC) solids through cation exchange method. An unprecedentedly high electrical conductivity is realized by the efficient generation of charge carriers onto a semiconducting CuS NC template via minimal Fe exchange. An electrical conductivity exceeding 10 500 S cm (13 400 S cm at 2 K) and a sheet resistance of 17 Ω/sq at room temperature, which are among the highest values for solution-processable semiconducting NCs, are achieved successfully from bornite-phase CuFeS NC films possessing 10% Fe atom. The temperature dependence of the corresponding films exhibits pure metallic characteristics. Highly conducting NCs are demonstrated for a thermoelectric layer exhibiting a high power factor over 1.2 mW m K at room temperature, electrical wires for switching on light emitting diods (LEDs), and source-drain electrodes for p- and n-type organic field-effect transistors. Ambient stability, eco-friendly composition, and solution-processability further validate their sustainable and practical applicability. The present study provides a simple but very effective method for significantly increasing charge carrier concentrations in semiconducting colloidal NCs to achieve metallic properties, which is applicable to various optoelectronic devices.
作者通过阳离子交换方法报告了一种从半导体 CuFeS 胶体纳米晶 (NC) 固体中获得金属性质的策略。通过最小的 Fe 交换,在半导体 CuS NC 模板上有效地产生载流子,实现了前所未有的高电导率。在室温下,电导率超过 10500 S cm(在 2 K 时为 13400 S cm)和片电阻为 17 Ω/sq,这是溶液处理半导体 NC 中最高的电导率值之一,成功地从具有 10% Fe 原子的斑铜矿相 CuFeS NC 薄膜获得。相应薄膜的温度依赖性表现出纯金属特性。对于在室温下具有超过 1.2 mW m K 的高功率因数的热电层、用于点亮发光二极管 (LED) 的电线以及 p-和 n-型有机场效应晶体管的源极-漏极电极,展示了高导电性的 NCs。环境稳定性、环保组成和溶液加工进一步验证了它们的可持续和实际适用性。本研究提供了一种简单但非常有效的方法,可显著增加半导体胶体 NC 中的载流子浓度,以实现金属性质,适用于各种光电设备。