Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
Med Phys. 2023 Jun;50(6):3726-3737. doi: 10.1002/mp.16360. Epub 2023 Mar 22.
Single photon emission computed tomography (SPECT) is an imaging modality that has demonstrated its utility in a number of clinical indications. Despite this progress, a high sensitivity, high spatial resolution, multi-tracer SPECT with a large field of view suitable for whole-body imaging of a broad range of radiotracers for theranostics is not available.
With the goal of filling this technological gap, we have designed a cadmium zinc telluride (CZT) full-ring SPECT scanner instrumented with a broad-energy tungsten collimator. The final purpose is to provide a multi-tracer solution for brain and whole-body imaging. Our static SPECT does not rely on the dual- and the triple-head rotational SPECT standard paradigm, enabling a larger effective area in each scan to increase the sensitivity. We provide a demonstration of the performance of our design using a realistic model of our detector with simulated body-sized phantoms filled with Tc and Lu.
We create a realistic model of our detector by using a combination of a Geant4 Application for Tomographic Emission (GATE) Monte Carlo simulation and a finite element model for the CZT response, accounting for low-energy tail effects in CZT that affects the sensitivity and the scatter correction. We implement a modified dual-energy-window scatter correction adapted for CZT. Other corrections for attenuation, detector and collimator response, and detector gaps and edges are also included. The images are reconstructed using the maximum-likelihood expectation-maximization. Detector and reconstruction performance are characterized with point sources, Derenzo phantoms, and a body-sized National Electrical Manufacturers Association (NEMA) Image Quality (IQ) phantom for both Tc and Lu.
Our SPECT design can resolve 7.9 mm rods for Tc (140 keV) and 9.5 mm for Lu (208 keV) in a hot-rod Derenzo phantom with a 3-min exposure and reach an image contrast of 78% for Tc and 57% for Lu using the NEMA IQ phantom with a 6-min exposure. Our modified scatter correction shows an improved contrast-recovery ratio compared to a standard correction.
In this paper, we demonstrate the good performance of our design for whole-body imaging purposes. This adds to our previous demonstration of improved qualitative and quantitative Tc imaging of brain perfusion and I imaging of dopamine transport with respect to state-of-the-art NaI dual-head cameras. We show that our design provides similar IQ and contrast to the commercial full-ring SPECT VERITON for Tc. Regarding Lu imaging of the 208 keV emissions, our design provides similar contrast to that of other state-of-the-art SPECTs with a significant reduction in exposure. The high sensitivity and extended energy range up to 250 keV makes our SPECT design a promising alternative for clinical imaging and theranostics of emerging radionuclides.
单光子发射计算机断层扫描(SPECT)是一种已经在许多临床适应症中证明其效用的成像方式。尽管取得了这一进展,但仍缺乏一种具有高灵敏度、高空间分辨率、多示踪剂、大视场的 SPECT,该 SPECT 适用于对广泛放射性示踪剂进行全身成像,以便进行治疗诊断。
为了填补这一技术空白,我们设计了一种带有宽能钨准直器的碲锌镉(CZT)全环 SPECT 扫描仪。最终目的是为脑和全身成像提供一种多示踪剂解决方案。我们的静态 SPECT 不依赖于双探头和三探头旋转 SPECT 标准范式,从而在每次扫描中提供更大的有效面积,以提高灵敏度。我们使用模拟体模填充的 Tc 和 Lu 的真实探测器模型来演示我们的设计性能。
我们通过使用 Geant4 应用于层析成像(GATE)蒙特卡罗模拟和 CZT 响应的有限元模型的组合来创建我们的探测器的真实模型,以考虑到影响灵敏度和散射校正的 CZT 中的低能尾效应。我们实施了一种针对 CZT 进行了修改的双能窗散射校正。还包括对衰减、探测器和准直器响应以及探测器间隙和边缘的其他校正。使用最大似然期望最大化(MLE-EM)进行图像重建。使用点源、Derenzo 体模和用于 Tc 和 Lu 的 NEMA 图像质量(IQ)体模对我们的 SPECT 设计进行了探测器和重建性能的特征描述。
我们的 SPECT 设计可以在 3 分钟的曝光时间内解析出 Tc(140keV)的 7.9mm 棒和 Lu(208keV)的 9.5mm 棒,并且在使用 NEMA IQ 体模进行 6 分钟的曝光时,Tc 的图像对比度达到 78%,Lu 的图像对比度达到 57%。与标准校正相比,我们的改进散射校正显示出了更高的对比度恢复比。
在本文中,我们展示了我们的设计用于全身成像的良好性能。这增加了我们之前的研究结果,即与最新的 NaI 双探头相机相比,我们的设计在脑灌注的 Tc 成像和多巴胺转运的 I 成像方面具有更好的定性和定量性能。我们表明,我们的设计在 Tc 方面提供了与商业全环 SPECT VERITON 相似的 IQ 和对比度。关于 Lu 的 208keV 发射成像,我们的设计提供了与其他最新 SPECT 相似的对比度,同时显著降低了曝光量。高灵敏度和扩展的能量范围高达 250keV 使得我们的 SPECT 设计成为新兴放射性核素临床成像和治疗诊断的有前途的替代方案。