Zerlaut Yann, Chemla Sandrine, Chavane Frederic, Destexhe Alain
Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, FRE 3693. 1 Avenue de la terrasse, 91198, Gif sur Yvette, France.
Neural Coding laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068, Rovereto, Italy.
J Comput Neurosci. 2018 Feb;44(1):45-61. doi: 10.1007/s10827-017-0668-2. Epub 2017 Nov 15.
Voltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at macroscopic scales. Since for each pixel VSDi signals report the average membrane potential over hundreds of neurons, it seems natural to use a mean-field formalism to model such signals. Here, we present a mean-field model of networks of Adaptive Exponential (AdEx) integrate-and-fire neurons, with conductance-based synaptic interactions. We study a network of regular-spiking (RS) excitatory neurons and fast-spiking (FS) inhibitory neurons. We use a Master Equation formalism, together with a semi-analytic approach to the transfer function of AdEx neurons to describe the average dynamics of the coupled populations. We compare the predictions of this mean-field model to simulated networks of RS-FS cells, first at the level of the spontaneous activity of the network, which is well predicted by the analytical description. Second, we investigate the response of the network to time-varying external input, and show that the mean-field model predicts the response time course of the population. Finally, to model VSDi signals, we consider a one-dimensional ring model made of interconnected RS-FS mean-field units. We found that this model can reproduce the spatio-temporal patterns seen in VSDi of awake monkey visual cortex as a response to local and transient visual stimuli. Conversely, we show that the model allows one to infer physiological parameters from the experimentally-recorded spatio-temporal patterns.
电压敏感染料成像(VSDi)揭示了宏观尺度下新皮层处理的基本特性。由于对于每个像素,VSDi信号报告了数百个神经元的平均膜电位,因此使用平均场形式来对这种信号进行建模似乎是很自然的。在这里,我们提出了一个基于电导的突触相互作用的自适应指数(AdEx)积分发放神经元网络的平均场模型。我们研究了规则发放(RS)兴奋性神经元和快速发放(FS)抑制性神经元组成的网络。我们使用主方程形式,结合AdEx神经元传递函数的半解析方法来描述耦合群体的平均动态。我们将这个平均场模型的预测结果与RS-FS细胞的模拟网络进行比较,首先是在网络的自发活动水平上,解析描述能够很好地预测这一水平。其次,我们研究了网络对随时间变化的外部输入的响应,并表明平均场模型能够预测群体的响应时间过程。最后,为了对VSDi信号进行建模,我们考虑了一个由相互连接的RS-FS平均场单元组成的一维环形模型。我们发现这个模型能够重现清醒猴子视觉皮层VSDi中作为对局部和短暂视觉刺激的响应而出现的时空模式。相反,我们表明该模型允许从实验记录的时空模式中推断出生理参数。