Suppr超能文献

使用半解耦分解增强低光照条件下的视网膜图像。

Enhancing retinal images in low-light conditions using semidecoupled decomposition.

机构信息

Major of Computer and Information Technology, Faculty of Information Technology, Roi Et Rajabhat University, Roi Et, Thailand.

Major of Computer Science, Department of Applied Science, Faculty of Science and Technology, Loei Rajabhat University, Loei, Thailand.

出版信息

Med Biol Eng Comput. 2023 Jul;61(7):1795-1805. doi: 10.1007/s11517-023-02811-4. Epub 2023 Mar 14.

Abstract

Eye diseases that are common and many diseases that result in visual ailments, such as diabetes and vascular disease, can be diagnosed through retinal imaging. The enhancement of retinal images often helps in diagnosing diseases related to retinal organ failure. However, today's image enhancement methods may lead to artificial boundaries, sudden color gradation, and the loss of image details. Therefore, to prevent these side effects, a new method of retinal image enhancement is proposed. In this work, we propose a new method for enhancing the overall contrast of colored retinal images. That is, we propose low-light image enhancement using a new retinex method based on a powerful semidecoupled retinex method. In particular, illumination layer I gradually approximates the S input image according to the file. This leads to a complete Gaussian transformation model, while the R-layer reflectance is estimated jointly by S and intermediary by I to suppress image noise simultaneously during R estimation on the publicly available Messidor database. From our assessment measurements (PSNR and SSIM), we show that this proposed method is effective in comparison with the relevant and recently proposed retinal imaging methods; moreover, the color, which is determined by the data, does not change the image structure. Finally, a technique is presented to improve the pronounced color of a retinal image, which is useful for ophthalmologists to screen for retinal disease more effectively. Moreover, this technique can be used in the development of robotics for imaging tests to search for clinical markers.

摘要

常见的眼部疾病和许多导致视觉疾病的疾病,如糖尿病和血管疾病,可以通过视网膜成像来诊断。视网膜图像的增强通常有助于诊断与视网膜器官衰竭相关的疾病。然而,目前的图像增强方法可能会导致人为边界、颜色突然渐变和图像细节丢失。因此,为了防止这些副作用,提出了一种新的视网膜图像增强方法。在这项工作中,我们提出了一种增强彩色视网膜图像整体对比度的新方法。也就是说,我们提出了一种基于强大的半解耦反射方法的新的低光图像增强方法。特别是,照明层 I 根据文件逐渐逼近 S 输入图像。这导致了一个完整的高斯变换模型,而 R 层反射率则由 S 和 I 共同估计,在公开的 Messidor 数据库上同时对 R 进行估计时抑制图像噪声。从我们的评估测量(PSNR 和 SSIM)中,我们表明与相关的和最近提出的视网膜成像方法相比,该方法是有效的;此外,由数据确定的颜色不会改变图像结构。最后,提出了一种改善视网膜图像显著颜色的技术,这对眼科医生更有效地筛查视网膜疾病很有用。此外,该技术可用于机器人成像测试的开发,以寻找临床标记物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验