Suppr超能文献

一种测量冷冻细胞裂解物和组织匀浆中复杂 V-ATP 水解的新方法。

A novel approach to measure complex V ATP hydrolysis in frozen cell lysates and tissue homogenates.

机构信息

Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

出版信息

Life Sci Alliance. 2023 Mar 14;6(4). doi: 10.26508/lsa.202201628. Print 2023 Apr.

Abstract

Mitochondrial depolarization can initiate reversal activity of ATP synthase, depleting ATP by its hydrolysis. We have recently shown that increased ATP hydrolysis contributes to ATP depletion leading to a maladaptation in mitochondrial disorders, where maximal hydrolytic capacity per CV content is increasing. However, despite its importance, ATP hydrolysis is not a commonly studied parameter because of the limitations of the currently available methods. Methods that measure CV hydrolytic activity indirectly require the isolation of mitochondria and involve the introduction of detergents, preventing their utilization in clinical studies or any high-throughput analyses. Here, we describe a novel approach to assess maximal ATP hydrolytic capacity and maximal respiratory capacity in a single assay in cell lysates, PBMCs, and tissue homogenates that were previously frozen. The methodology described here has the potential to be used in clinical samples to determine adaptive and maladaptive adjustments of CV function in diseases, with the added benefit of being able to use frozen samples in a high-throughput manner and to explore ATP hydrolysis as a drug target for disease treatment.

摘要

线粒体去极化可以启动 ATP 合酶的逆转活性,通过水解来耗尽 ATP。我们最近表明,增加的 ATP 水解有助于导致线粒体疾病适应不良的 ATP 耗竭,其中每个 CV 含量的最大水解能力正在增加。然而,尽管它很重要,但由于当前可用方法的限制,ATP 水解并不是一个常用的研究参数。间接测量 CV 水解活性的方法需要分离线粒体,并涉及去污剂的引入,这使得它们无法在临床研究或任何高通量分析中使用。在这里,我们描述了一种新方法,可在细胞裂解物、PBMC 和先前冷冻的组织匀浆物中单次测定中评估最大 ATP 水解能力和最大呼吸能力。这里描述的方法有可能用于临床样本,以确定疾病中 CV 功能的适应性和不适应性调整,其额外的好处是能够以高通量的方式使用冷冻样本,并将 ATP 水解作为疾病治疗的药物靶点进行探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a3/10019470/194f5eca985c/LSA-2022-01628_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验