Suppr超能文献

工作记忆控制动力学遵循空间计算原理。

Working memory control dynamics follow principles of spatial computing.

机构信息

Division of Psychology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.

The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA.

出版信息

Nat Commun. 2023 Mar 14;14(1):1429. doi: 10.1038/s41467-023-36555-4.

Abstract

Working memory (WM) allows us to remember and selectively control a limited set of items. Neural evidence suggests it is achieved by interactions between bursts of beta and gamma oscillations. However, it is not clear how oscillations, reflecting coherent activity of millions of neurons, can selectively control individual WM items. Here we propose the novel concept of spatial computing where beta and gamma interactions cause item-specific activity to flow spatially across the network during a task. This way, control-related information such as item order is stored in the spatial activity independent of the detailed recurrent connectivity supporting the item-specific activity itself. The spatial flow is in turn reflected in low-dimensional activity shared by many neurons. We verify these predictions by analyzing local field potentials and neuronal spiking. We hypothesize that spatial computing can facilitate generalization and zero-shot learning by utilizing spatial component as an additional information encoding dimension.

摘要

工作记忆 (WM) 使我们能够记住和有选择地控制有限数量的项目。神经证据表明,这是通过β波和γ波爆发之间的相互作用实现的。然而,目前尚不清楚如何通过反映数百万个神经元相干活动的振荡来选择性地控制单个 WM 项目。在这里,我们提出了一个新的概念,即空间计算,其中β波和γ波的相互作用导致在任务期间,项目特定的活动在网络中空间地流动。这样,与控制相关的信息,如项目顺序,就以空间活动的形式存储在与支持项目特定活动本身的详细递归连接无关的地方。这种空间流动反过来又反映在许多神经元共享的低维活动中。我们通过分析局部场电位和神经元放电来验证这些预测。我们假设空间计算可以通过利用空间成分作为额外的信息编码维度来促进泛化和零样本学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c9/10015009/56b7d9f89690/41467_2023_36555_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验