State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
Hubei Hongshan Laboratory, Wuhan, China.
Genome Biol. 2023 Mar 14;24(1):49. doi: 10.1186/s13059-023-02886-0.
The epidermis of cotton ovule produces fibers, the most important natural cellulose source for the global textile industry. However, the molecular mechanism of fiber cell growth is still poorly understood.
Here, we develop an optimized protoplasting method, and integrate single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) to systematically characterize the cells of the outer integument of ovules from wild type and fuzzless/lintless (fl) cotton (Gossypium hirsutum). By jointly analyzing the scRNA-seq data from wildtype and fl, we identify five cell populations including the fiber cell type and construct the development trajectory for fiber lineage cells. Interestingly, by time-course diurnal transcriptomic analysis, we demonstrate that the primary growth of fiber cells is a highly regulated circadian rhythmic process. Moreover, we identify a small peptide GhRALF1 that circadian rhythmically controls fiber growth possibly through oscillating auxin signaling and proton pump activity in the plasma membrane. Combining with scATAC-seq, we further identify two cardinal cis-regulatory elements (CREs, TCP motif, and TCP-like motif) which are bound by the trans factors GhTCP14s to modulate the circadian rhythmic metabolism of mitochondria and protein translation through regulating approximately one third of genes that are highly expressed in fiber cells.
We uncover a fiber-specific circadian clock-controlled gene expression program in regulating fiber growth. This study unprecedentedly reveals a new route to improve fiber traits by engineering the circadian clock of fiber cells.
棉籽珠被表皮产生纤维,这是全球纺织工业最重要的天然纤维素来源。然而,纤维细胞生长的分子机制仍知之甚少。
我们开发了一种优化的原生质体制备方法,并整合了单细胞 RNA 测序(scRNA-seq)和单细胞 ATAC 测序(scATAC-seq),系统地表征了野生型和无绒/无棉(fl)棉花(Gossypium hirsutum)珠被外珠被细胞。通过联合分析野生型和 fl 的 scRNA-seq 数据,我们鉴定了包括纤维细胞类型在内的五个细胞群,并构建了纤维谱系细胞的发育轨迹。有趣的是,通过时间进程的昼夜转录组分析,我们证明纤维细胞的初级生长是一个高度调控的昼夜节律过程。此外,我们鉴定了一种小肽 GhRALF1,它通过在质膜中振荡生长素信号和质子泵活性,可能昼夜节律地控制纤维生长。结合 scATAC-seq,我们进一步鉴定了两个主要的顺式调控元件(CREs,TCP 基序和 TCP 样基序),它们被转录因子 GhTCP14s 结合,通过调节大约三分之一在纤维细胞中高度表达的基因,来调节线粒体和蛋白质翻译的昼夜节律代谢。
我们揭示了一个纤维特异性的生物钟控制基因表达程序,用于调节纤维生长。本研究前所未有地揭示了通过工程纤维细胞生物钟来改良纤维特性的新途径。