Chau Tran N, Timilsena Prakash Raj, Bathala Sai Pavan, Kundu Sanchari, Bargmann Bastiaan O R, Li Song
Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA.
School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.
Nat Commun. 2025 Jan 2;16(1):201. doi: 10.1038/s41467-024-55755-0.
Single-cell RNA sequencing (scRNA-seq) is widely used in plant biology and is a powerful tool for studying cell identity and differentiation. However, the scarcity of known cell-type marker genes and the divergence of marker expression patterns limit the accuracy of cell-type identification and our capacity to investigate cell-type conservation in many species. To tackle this challenge, we devise a novel computational strategy called Orthologous Marker Gene Groups (OMGs), which can identify cell types in both model and non-model plant species and allows for rapid comparison of cell types across many published single-cell maps. Our method does not require cross-species data integration, while still accurately determining inter-species cellular similarities. We validate the method by analyzing published single-cell data from species with well-annotated single-cell maps, and we show our methods can capture majority of manually annotated cell types. The robustness of our method is further demonstrated by its ability to pertinently map cell clusters from 1 million cells, 268 cell clusters across 15 diverse plant species. We reveal 14 dominant groups with substantial conservation in shared cell-type markers across monocots and dicots. To facilitate the use of this method by the broad research community, we launch a user-friendly web-based tool called the OMG browser, which simplifies the process of cell-type identification in plant datasets for biologists.
单细胞RNA测序(scRNA-seq)在植物生物学中被广泛应用,是研究细胞身份和分化的有力工具。然而,已知细胞类型标记基因的稀缺以及标记表达模式的差异限制了细胞类型鉴定的准确性,也限制了我们在许多物种中研究细胞类型保守性的能力。为应对这一挑战,我们设计了一种名为直系同源标记基因组(OMGs)的新型计算策略,该策略可以识别模式植物和非模式植物物种中的细胞类型,并允许在许多已发表的单细胞图谱之间快速比较细胞类型。我们的方法不需要跨物种数据整合,同时仍能准确确定物种间的细胞相似性。我们通过分析来自具有注释良好的单细胞图谱的物种的已发表单细胞数据来验证该方法,并且我们表明我们的方法可以捕获大多数手动注释的细胞类型。我们的方法能够准确地映射来自100万个细胞、跨越15种不同植物物种的268个细胞簇,进一步证明了其稳健性。我们揭示了14个主要的细胞类型组,在单子叶植物和双子叶植物共享的细胞类型标记中具有显著保守性。为便于广大研究群体使用该方法,我们推出了一个名为OMG浏览器的用户友好型网络工具,该工具简化了生物学家在植物数据集中进行细胞类型鉴定的过程。