Suppr超能文献

人源 Polo 样激酶抑制剂作为抗疟药物。

Human Polo-like Kinase Inhibitors as Antiplasmodials.

机构信息

Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States.

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States.

出版信息

ACS Infect Dis. 2023 Apr 14;9(4):1004-1021. doi: 10.1021/acsinfecdis.3c00025. Epub 2023 Mar 15.

Abstract

Protein kinases have proven to be a very productive class of therapeutic targets, and over 90 inhibitors are currently in clinical use primarily for the treatment of cancer. Repurposing these inhibitors as antimalarials could provide an accelerated path to drug development. In this study, we identified BI-2536, a known potent human polo-like kinase 1 inhibitor, with low nanomolar antiplasmodial activity. Screening of additional PLK1 inhibitors revealed further antiplasmodial candidates despite the lack of an obvious orthologue of PLKs in . A subset of these inhibitors was profiled for their killing profile, and commonalities between the killing rate and inhibition of nuclear replication were noted. A kinase panel screen identified NEK3 as a shared target of these PLK1 inhibitors; however, phosphoproteome analysis confirmed distinct signaling pathways were disrupted by two structurally distinct inhibitors, suggesting NEK3 may not be the sole target. Genomic analysis of BI-2536-resistant parasites revealed mutations in genes associated with the starvation-induced stress response, suggesting BI-2536 may also inhibit an aminoacyl-tRNA synthetase.

摘要

蛋白激酶已被证明是一类非常有成效的治疗靶点,目前有超过 90 种抑制剂主要用于癌症的治疗。将这些抑制剂重新用于抗疟药物的研发可能会提供一条加速药物开发的途径。在这项研究中,我们发现 BI-2536 是一种已知的强效人类 polo 样激酶 1 抑制剂,对疟原虫具有低纳摩尔级的抗疟活性。尽管在 中缺乏明显的 PLKs 同源物,但对其他 PLK1 抑制剂的筛选揭示了更多的抗疟候选物。对这些抑制剂中的一部分进行了杀伤谱分析,并注意到杀伤率和核复制抑制之间的共同性。激酶谱筛选鉴定出 NEK3 是这些 PLK1 抑制剂的共同靶标;然而,磷酸化蛋白质组分析证实两种结构不同的抑制剂破坏了不同的信号通路,表明 NEK3 可能不是唯一的靶标。对 BI-2536 耐药寄生虫的基因组分析显示,与饥饿诱导的应激反应相关的基因发生了突变,表明 BI-2536 也可能抑制氨酰-tRNA 合成酶。

相似文献

1
Human Polo-like Kinase Inhibitors as Antiplasmodials.
ACS Infect Dis. 2023 Apr 14;9(4):1004-1021. doi: 10.1021/acsinfecdis.3c00025. Epub 2023 Mar 15.
2
Non-mitotic functions of polo-like kinases in cancer cells.
Biochim Biophys Acta Rev Cancer. 2021 Jan;1875(1):188467. doi: 10.1016/j.bbcan.2020.188467. Epub 2020 Nov 7.
3
p53 is not directly relevant to the response of Polo-like kinase 1 inhibitors.
Cell Cycle. 2012 Feb 1;11(3):543-53. doi: 10.4161/cc.11.3.19076.
4
Thoughts on the current assessment of Polo-like kinase inhibitor drug discovery.
Expert Opin Drug Discov. 2015 Jan;10(1):1-8. doi: 10.1517/17460441.2015.962510. Epub 2014 Sep 29.
5
Co-targeting PLK1 and mTOR induces synergistic inhibitory effects against esophageal squamous cell carcinoma.
J Mol Med (Berl). 2018 Aug;96(8):807-817. doi: 10.1007/s00109-018-1663-4. Epub 2018 Jun 29.
7
Enabling and disabling polo-like kinase 1 inhibition through chemical genetics.
ACS Chem Biol. 2012 Jun 15;7(6):978-81. doi: 10.1021/cb200551p. Epub 2012 Mar 20.
8
Molecular and enzoinformatics perspectives of targeting Polo-like kinase 1 in cancer therapy.
Semin Cancer Biol. 2019 Jun;56:47-55. doi: 10.1016/j.semcancer.2017.11.004. Epub 2017 Nov 6.
9
Polo-like kinases inhibitors.
Curr Med Chem. 2012;19(23):3937-48. doi: 10.2174/092986712802002455.

引用本文的文献

2
Antimalarial drug resistance and drug discovery: learning from the past to innovate the future.
Int J Parasitol Drugs Drug Resist. 2025 Jul 8;28:100602. doi: 10.1016/j.ijpddr.2025.100602.
3
Promising antimalarial hits from phenotypic screens: a review of recently-described multi-stage actives and their modes of action.
Front Cell Infect Microbiol. 2023 Dec 15;13:1308193. doi: 10.3389/fcimb.2023.1308193. eCollection 2023.
4
Characterization of 2,4-Dianilinopyrimidines Against Five Kinases PfARK1, PfARK3, PfNEK3, PfPK9, and PfPKB.
ACS Med Chem Lett. 2023 Nov 27;14(12):1774-1784. doi: 10.1021/acsmedchemlett.3c00354. eCollection 2023 Dec 14.

本文引用的文献

1
Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy.
Science. 2022 Jun 3;376(6597):1074-1079. doi: 10.1126/science.abn0611. Epub 2022 Jun 2.
2
The Plasmodium NOT1-G paralogue is an essential regulator of sexual stage maturation and parasite transmission.
PLoS Biol. 2021 Oct 21;19(10):e3001434. doi: 10.1371/journal.pbio.3001434. eCollection 2021 Oct.
3
Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention.
Cell Chem Biol. 2022 Feb 17;29(2):191-201.e8. doi: 10.1016/j.chembiol.2021.07.010. Epub 2021 Aug 3.
4
The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance.
Cell Chem Biol. 2022 May 19;29(5):824-839.e6. doi: 10.1016/j.chembiol.2021.06.006. Epub 2021 Jul 6.
5
Kinase drug discovery 20 years after imatinib: progress and future directions.
Nat Rev Drug Discov. 2021 Jul;20(7):551-569. doi: 10.1038/s41573-021-00195-4. Epub 2021 May 17.
6
Antiplasmodial Compounds from Deep-Water Marine Invertebrates.
Mar Drugs. 2021 Mar 25;19(4):179. doi: 10.3390/md19040179.
7
Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities.
ACS Infect Dis. 2021 Mar 12;7(3):518-534. doi: 10.1021/acsinfecdis.0c00724. Epub 2021 Feb 16.
10
Inhibition of Plasmodium falciparum Lysyl-tRNA synthetase via an anaplastic lymphoma kinase inhibitor.
Nucleic Acids Res. 2020 Nov 18;48(20):11566-11576. doi: 10.1093/nar/gkaa862.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验