Suppr超能文献

DEMO2:通过将类似的模板比对与深度学习的域间约束预测相结合,组装多结构域蛋白质结构。

DEMO2: Assemble multi-domain protein structures by coupling analogous template alignments with deep-learning inter-domain restraint prediction.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.

College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China.

出版信息

Nucleic Acids Res. 2022 Jul 5;50(W1):W235-W245. doi: 10.1093/nar/gkac340.

Abstract

Most proteins in nature contain multiple folding units (or domains). The revolutionary success of AlphaFold2 in single-domain structure prediction showed potential to extend deep-learning techniques for multi-domain structure modeling. This work presents a significantly improved method, DEMO2, which integrates analogous template structural alignments with deep-learning techniques for high-accuracy domain structure assembly. Starting from individual domain models, inter-domain spatial restraints are first predicted with deep residual convolutional networks, where full-length structure models are assembled using L-BFGS simulations under the guidance of a hybrid energy function combining deep-learning restraints and analogous multi-domain template alignments searched from the PDB. The output of DEMO2 contains deep-learning inter-domain restraints, top-ranked multi-domain structure templates, and up to five full-length structure models. DEMO2 was tested on a large-scale benchmark and the blind CASP14 experiment, where DEMO2 was shown to significantly outperform its predecessor and the state-of-the-art protein structure prediction methods. By integrating with new deep-learning techniques, DEMO2 should help fill the rapidly increasing gap between the improved ability of tertiary structure determination and the high demand for the high-quality multi-domain protein structures. The DEMO2 server is available at https://zhanggroup.org/DEMO/.

摘要

大多数天然蛋白质都包含多个折叠单元(或结构域)。AlphaFold2 在单结构域预测方面的突破性成功,为将深度学习技术拓展到多结构域建模中提供了潜力。这项工作提出了一种显著改进的方法 DEMO2,它将类似模板的结构比对与深度学习技术相结合,用于高精度的结构域组装。从单个结构域模型开始,首先使用深度残差卷积网络预测结构域之间的空间约束,然后使用 L-BFGS 模拟,在结合了深度学习约束和从 PDB 中搜索到的类似多结构域模板比对的混合能量函数的指导下,组装全长结构模型。DEMO2 的输出包含深度学习结构域约束、排名最高的多结构域模板以及多达五个全长结构模型。DEMO2 在大规模基准测试和盲测 CASP14 实验中进行了测试,结果表明,DEMO2 显著优于其前身和最先进的蛋白质结构预测方法。通过与新的深度学习技术相结合,DEMO2 应该有助于填补不断扩大的三级结构确定能力与高质量多结构域蛋白质结构的高需求之间的差距。DEMO2 服务器可在 https://zhanggroup.org/DEMO/ 上访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0c0/9252800/258b1730744c/gkac340figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验