Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America.
Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America.
J Neural Eng. 2023 Mar 15;20(2). doi: 10.1088/1741-2552/acbe1e.
Sensory nerves of the peripheral nervous system (PNS) transmit afferent signals from the body to the brain. These peripheral nerves are composed of distinct subsets of fibers and associated cell bodies, which reside in peripheral ganglia distributed throughout the viscera and along the spinal cord. The vagus nerve (cranial nerve X) is a complex polymodal nerve that transmits a wide array of sensory information, including signals related to mechanical, chemical, and noxious stimuli. To understand how stimuli applied to the vagus nerve are encoded by vagal sensory neurons in the jugular-nodose ganglia, we developed a framework for micro-endoscopic calcium imaging and analysis.We developed novel methods forimaging of the intact jugular-nodose ganglion using a miniature microscope (Miniscope) in transgenic mice with the genetically-encoded calcium indicator GCaMP6f. We adapted the Python-based analysis package Calcium Imaging Analysis (CaImAn) to process the resulting one-photon fluorescence data into calcium transients for subsequent analysis. Random forest classification was then used to identify specific types of neuronal responders.We demonstrate that recordings from the jugular-nodose ganglia can be accomplished through careful surgical dissection and ganglia stabilization. Using a customized acquisition and analysis pipeline, we show that subsets of vagal sensory neurons respond to different chemical stimuli applied to the vagus nerve. Successful classification of the responses with a random forest model indicates that certain calcium transient features, such as amplitude and duration, are important for encoding these stimuli by sensory neurons.This experimental approach presents a new framework for investigating how individual vagal sensory neurons encode various stimuli on the vagus nerve. Our surgical and analytical approach can be applied to other PNS ganglia in rodents and other small animal species to elucidate previously unexplored roles for peripheral neurons in a diverse set of physiological functions.
外周神经系统(PNS)的感觉神经将来自身体的传入信号传递到大脑。这些周围神经由不同的纤维亚群和相关的细胞体组成,这些细胞体位于分布在整个内脏和脊髓沿线的外周神经节中。迷走神经(颅神经 X)是一种复杂的多模态神经,它传递广泛的感觉信息,包括与机械、化学和有害刺激相关的信号。为了了解刺激迷走神经时,颈静脉结神经节中的迷走感觉神经元是如何编码的,我们开发了一种用于微内窥镜钙成像和分析的框架。我们开发了使用微型显微镜(Miniscope)对转基因小鼠完整颈静脉结神经节进行成像的新方法,该显微镜带有基因编码的钙指示剂 GCaMP6f。我们改编了基于 Python 的分析包 Calcium Imaging Analysis(CaImAn),将由此产生的单光子荧光数据处理成钙瞬变,以便进行后续分析。然后使用随机森林分类来识别特定类型的神经元响应者。我们证明,通过仔细的手术解剖和神经节稳定,可以完成颈静脉结神经节的记录。使用定制的采集和分析管道,我们表明迷走感觉神经元的亚群对迷走神经上施加的不同化学刺激有反应。随机森林模型对响应的成功分类表明,某些钙瞬变特征(如幅度和持续时间)对于感觉神经元对这些刺激的编码很重要。这种实验方法为研究单个迷走感觉神经元如何对迷走神经上的各种刺激进行编码提供了一个新的框架。我们的手术和分析方法可应用于啮齿动物和其他小动物物种的其他 PNS 神经节,以阐明外周神经元在一系列生理功能中的以前未知的作用。