Suppr超能文献

模型构建和稀疏数据区域精修趋势的好坏:过度拟合的有害形式与良好的新工具和预测。

The bad and the good of trends in model building and refinement for sparse-data regions: pernicious forms of overfitting versus good new tools and predictions.

机构信息

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA.

出版信息

Acta Crystallogr D Struct Biol. 2023 Dec 1;79(Pt 12):1071-1078. doi: 10.1107/S2059798323008847. Epub 2023 Nov 3.

Abstract

Model building and refinement, and the validation of their correctness, are very effective and reliable at local resolutions better than about 2.5 Å for both crystallography and cryo-EM. However, at local resolutions worse than 2.5 Å both the procedures and their validation break down and do not ensure reliably correct models. This is because in the broad density at lower resolution, critical features such as protein backbone carbonyl O atoms are not just less accurate but are not seen at all, and so peptide orientations are frequently wrongly fitted by 90-180°. This puts both backbone and side chains into the wrong local energy minimum, and they are then worsened rather than improved by further refinement into a valid but incorrect rotamer or Ramachandran region. On the positive side, new tools are being developed to locate this type of pernicious error in PDB depositions, such as CaBLAM, EMRinger, Pperp diagnosis of ribose puckers, and peptide flips in PDB-REDO, while interactive modeling in Coot or ISOLDE can help to fix many of them. Another positive trend is that artificial intelligence predictions such as those made by AlphaFold2 contribute additional evidence from large multiple sequence alignments, and in high-confidence parts they provide quite good starting models for loops, termini or whole domains with otherwise ambiguous density.

摘要

模型构建和精修,以及对其正确性的验证,在局部分辨率优于约 2.5Å 的情况下,对于晶体学和 cryo-EM 都非常有效和可靠。然而,在局部分辨率低于 2.5Å 的情况下,这些程序及其验证都会失效,无法确保得到可靠正确的模型。这是因为在较低分辨率的广泛密度中,关键特征,如蛋白质骨架羰基 O 原子,不仅准确性较低,而且根本无法看到,因此肽段取向经常会错误地旋转 90-180°。这会将骨架和侧链置于错误的局部能量最小值,然后通过进一步精修进入有效但不正确的构象或 Ramachandran 区域,反而会使它们变得更糟而不是更好。从积极的方面来看,正在开发新的工具来定位 PDB 存储库中这种类型的有害错误,例如 CaBLAM、EMRinger、核糖构象 puckers 的 Pperp 诊断以及 PDB-REDO 中的肽段翻转,而 Coot 或 ISOLDE 中的交互式建模可以帮助修复其中的许多错误。另一个积极的趋势是,人工智能预测,如 AlphaFold2 所做的预测,从大量多重序列比对中提供额外的证据,在高可信度部分,它们为具有其他不明确密度的环、末端或整个结构域提供了相当好的起始模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1055/10833350/7ef7c6fbf93f/d-79-01071-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验