Suppr超能文献

利用参数 g 计算估计长期暴露于空气污染对死亡率风险的影响,并模拟假设政策的效益:加拿大社区健康调查队列(2005 年至 2015 年)。

Using Parametric g-Computation to Estimate the Effect of Long-Term Exposure to Air Pollution on Mortality Risk and Simulate the Benefits of Hypothetical Policies: The Canadian Community Health Survey Cohort (2005 to 2015).

机构信息

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA.

Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.

出版信息

Environ Health Perspect. 2023 Mar;131(3):37010. doi: 10.1289/EHP11095. Epub 2023 Mar 15.

Abstract

BACKGROUND

Numerous epidemiological studies have documented the adverse health impact of long-term exposure to fine particulate matter [particulate matter in aerodynamic diameter ()] on mortality even at relatively low levels. However, methodological challenges remain to consider potential regulatory intervention's complexity and provide actionable evidence on the predicted benefits of interventions. We propose the parametric g-computation as an alternative analytical approach to such challenges.

METHOD

We applied the parametric g-computation to estimate the cumulative risks of nonaccidental death under different hypothetical intervention strategies targeting long-term exposure to in the Canadian Community Health Survey cohort from 2005 to 2015. On both relative and absolute scales, we explored the benefits of hypothetical intervention strategies compared with the natural course that ) set the simulated exposure value at each follow-up year to a threshold value if exposure was above the threshold (, , , and ), and ) reduced the simulated exposure value by a percentage (5% and 10%) at each follow-up year. We used the 3-y average concentration with 1-y lag at the postal code of respondents' annual mailing addresses as their long-term exposure to . We considered baseline and time-varying confounders, including demographics, behavior characteristics, income level, and neighborhood socioeconomic status. We also included the R syntax for reproducibility and replication.

RESULTS

All hypothetical intervention strategies explored led to lower 11-y cumulative mortality risks than the estimated value under the natural course without intervention, with the smallest reduction of 0.20 per 1,000 participants (95% CI: 0.06, 0.34) under the threshold of , and the largest reduction of 3.40 per 1,000 participants (95% CI: , 7.03) under the relative reduction of 10% per interval. The reductions in cumulative risk, or numbers of deaths that would have been prevented if the intervention was employed instead of maintaining the status quo, increased over time but flattened toward the end of the follow-up period. Estimates among those years of age were greater with a similar pattern. Our estimates were robust to different model specifications.

DISCUSSION

We found evidence that any intervention further reducing the long-term exposure to would reduce the cumulative mortality risk, with greater benefits in the older population, even in a population already exposed to low levels of ambient . The parametric g-computation used in this study provides flexibilities in simulating real-world interventions, accommodates time-varying exposure and confounders, and estimates adjusted survival curves with clearer interpretation and more information than a single hazard ratio, making it a valuable analytical alternative in air pollution epidemiological research. https://doi.org/10.1289/EHP11095.

摘要

背景

大量的流行病学研究已经证明,长期暴露于细颗粒物(空气动力学直径小于等于 2.5 微米的颗粒物)中会对死亡率产生不良影响,即使在相对较低的水平也是如此。然而,在考虑潜在的监管干预的复杂性并提供干预措施的预期效益方面,仍然存在方法学挑战。我们提出参数 g 计算作为一种替代分析方法来应对这些挑战。

方法

我们应用参数 g 计算来估计在 2005 年至 2015 年期间,针对加拿大社区健康调查队列中长期暴露于空气中的不同假设干预策略下的非意外死亡累积风险。在相对和绝对尺度上,我们探讨了与自然过程相比,假设干预策略的益处,自然过程是指如果暴露值超过阈值( 、 、 、和 ),则将模拟暴露值设置为每个随访年的阈值;如果每年的随访中,模拟暴露值降低了 5%或 10%。我们使用 3 年平均 浓度和滞后 1 年的邮政编码作为受访者年度邮寄地址的长期暴露值。我们考虑了基线和时变混杂因素,包括人口统计学、行为特征、收入水平和邻里社会经济地位。我们还包括了可重复性和复制性的 R 语法。

结果

所有探索的假设干预策略都导致 11 年累积死亡率风险低于自然过程中无干预的估计值,在 阈值下的最小降低幅度为每 1000 名参与者 0.20(95%置信区间:0.06,0.34),在相对减少 10%的情况下最大降低幅度为每 1000 名参与者 3.40(95%置信区间: ,7.03)。累积风险的降低,即如果实施干预而不是维持现状,本可以预防的死亡人数,随着时间的推移而增加,但在随访期结束时趋于平稳。在 岁及以上的人群中,估计值更大,且具有类似的模式。我们的估计结果在不同的模型规范下是稳健的。

讨论

我们发现有证据表明,任何进一步降低长期暴露于空气中的干预措施都将降低累积死亡率风险,在老年人群中获益更大,即使在已经暴露于低水平环境中的人群中也是如此。本研究中使用的参数 g 计算提供了模拟现实世界干预措施的灵活性,适应了时变的暴露和混杂因素,并估计了调整后的生存曲线,与单一危险比相比,解释更清晰,信息更丰富,因此在空气污染流行病学研究中是一种有价值的分析替代方法。https://doi.org/10.1289/EHP11095.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9803/10016347/e82a89bf76bd/ehp11095_f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验