Suppr超能文献

重新审视 g-空集悖论。

Revisiting the g-null Paradox.

机构信息

From the Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA.

Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA.

出版信息

Epidemiology. 2022 Jan 1;33(1):114-120. doi: 10.1097/EDE.0000000000001431.

Abstract

The (noniterative conditional expectation) parametric g-formula is an approach to estimating causal effects of sustained treatment strategies from observational data. An often-cited limitation of the parametric g-formula is the g-null paradox: a phenomenon in which model misspecification in the parametric g-formula is guaranteed in some settings consistent with the conditions that motivate its use (i.e., when identifiability conditions hold and measured time-varying confounders are affected by past treatment). Many users of the parametric g-formula acknowledge the g-null paradox as a limitation when reporting results but still require clarity on its meaning and implications. Here, we revisit the g-null paradox to clarify its role in causal inference studies. In doing so, we present analytic examples and a simulation-based illustration of the bias of parametric g-formula estimates under the conditions associated with this paradox. Our results highlight the importance of avoiding overly parsimonious models for the components of the g-formula when using this method.

摘要

(非迭代条件期望)参数 g 公式是一种从观察数据估计持续治疗策略因果效应的方法。参数 g 公式的一个常被引用的局限性是 g 空集悖论:在某些与激发其使用的条件一致的设置中(即当可识别性条件成立且测量的时变混杂因素受过去治疗的影响),参数 g 公式中的模型误设定是有保证的现象。许多参数 g 公式的使用者在报告结果时承认 g 空集悖论是一个局限性,但仍需要明确其含义和影响。在这里,我们重新审视 g 空集悖论,以澄清其在因果推理研究中的作用。为此,我们提出了分析示例和基于模拟的说明,说明了在与该悖论相关的条件下,参数 g 公式估计的偏差。我们的结果强调了在使用这种方法时,避免 g 公式组成部分过于简约模型的重要性。

相似文献

1
Revisiting the g-null Paradox.重新审视 g-空集悖论。
Epidemiology. 2022 Jan 1;33(1):114-120. doi: 10.1097/EDE.0000000000001431.
4

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验