Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
Department of Radiology, Changhai Hospital, Shanghai, China.
Eur Radiol. 2023 May;33(5):3444-3454. doi: 10.1007/s00330-023-09490-7. Epub 2023 Mar 15.
To determine if three-dimensional (3D) radiomic features of contrast-enhanced CT (CECT) images improve prediction of rapid abdominal aortic aneurysm (AAA) growth.
This longitudinal cohort study retrospectively analyzed 195 consecutive patients (mean age, 72.4 years ± 9.1) with a baseline CECT and a subsequent CT or MR at least 6 months later. 3D radiomic features were measured for 3 regions of the AAA, viz. the vessel lumen only; the intraluminal thrombus (ILT) and aortic wall only; and the entire AAA sac (lumen, ILT, and wall). Multiple machine learning (ML) models to predict rapid growth, defined as the upper tercile of observed growth (> 0.25 cm/year), were developed using data from 60% of the patients. Diagnostic accuracy was evaluated using the area under the receiver operating characteristic curve (AUC) in the remaining 40% of patients.
The median AAA maximum diameter was 3.9 cm (interquartile range [IQR], 3.3-4.4 cm) at baseline and 4.4 cm (IQR, 3.7-5.4 cm) at the mean follow-up time of 3.2 ± 2.4 years (range, 0.5-9 years). A logistic regression model using 7 radiomic features of the ILT and wall had the highest AUC (0.83; 95% confidence interval [CI], 0.73-0.88) in the development cohort. In the independent test cohort, this model had a statistically significantly higher AUC than a model including maximum diameter, AAA volume, and relevant clinical factors (AUC = 0.78, 95% CI, 0.67-0.87 vs AUC = 0.69, 95% CI, 0.57-0.79; p = 0.04).
A radiomics-based method focused on the ILT and wall improved prediction of rapid AAA growth from CECT imaging.
• Radiomic analysis of 195 abdominal CECT revealed that an ML-based model that included textural features of intraluminal thrombus (if present) and aortic wall improved prediction of rapid AAA progression compared to maximum diameter. • Predictive accuracy was higher when radiomic features were obtained from the thrombus and wall as opposed to the entire AAA sac (including lumen), or the lumen alone. • Logistic regression of selected radiomic features yielded similar accuracy to predict rapid AAA progression as random forests or support vector machines.
确定增强 CT(CECT)图像的三维(3D)放射组学特征是否可提高腹主动脉瘤(AAA)快速生长的预测能力。
本纵向队列研究回顾性分析了 195 例连续患者(平均年龄 72.4±9.1 岁),基线时进行了 CECT 检查,随后至少在 6 个月后进行了 CT 或 MR 检查。对 AAA 的 3 个区域(仅血管腔;腔内血栓(ILT)和主动脉壁;以及整个 AAA 囊(腔、ILT 和壁))进行了 3D 放射组学特征测量。使用 60%患者的数据开发了用于预测快速生长(定义为观察到的生长的上三分位数(>0.25cm/年)的多个机器学习(ML)模型。使用剩余 40%患者的数据评估诊断准确性,通过接收者操作特征曲线(AUC)下面积进行评估。
基线时 AAA 的最大直径中位数为 3.9cm(四分位间距[IQR],3.3-4.4cm),平均随访时间为 3.2±2.4 年(范围,0.5-9 年)时为 4.4cm(IQR,3.7-5.4cm)。在开发队列中,使用 ILT 和壁的 7 个放射组学特征的逻辑回归模型具有最高的 AUC(0.83;95%置信区间[CI],0.73-0.88)。在独立的测试队列中,与包括最大直径、AAA 体积和相关临床因素的模型相比,该模型的 AUC 具有统计学意义(AUC=0.78,95%CI,0.67-0.87 vs AUC=0.69,95%CI,0.57-0.79;p=0.04)。
基于放射组学的方法侧重于 ILT 和壁,可提高从 CECT 成像预测 AAA 快速生长的能力。
• 对 195 例腹部 CECT 的放射组学分析表明,与最大直径相比,基于 ML 的模型纳入腔内血栓(如果存在)和主动脉壁的纹理特征可提高 AAA 进展快速预测的准确性。• 当从血栓和壁而不是整个 AAA 囊(包括腔)或仅腔获得放射组学特征时,预测准确性更高。• 选择的放射组学特征的逻辑回归得出了与随机森林或支持向量机相似的预测 AAA 快速进展的准确性。