Suppr超能文献

利用深度神经网络预测 12 导联心电图电压数据的死亡率。

Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network.

机构信息

Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA.

Department of Computer Science, Bucknell University, Lewisburg, PA, USA.

出版信息

Nat Med. 2020 Jun;26(6):886-891. doi: 10.1038/s41591-020-0870-z. Epub 2020 May 11.

Abstract

The electrocardiogram (ECG) is a widely used medical test, consisting of voltage versus time traces collected from surface recordings over the heart. Here we hypothesized that a deep neural network (DNN) can predict an important future clinical event, 1-year all-cause mortality, from ECG voltage-time traces. By using ECGs collected over a 34-year period in a large regional health system, we trained a DNN with 1,169,662 12-lead resting ECGs obtained from 253,397 patients, in which 99,371 events occurred. The model achieved an area under the curve (AUC) of 0.88 on a held-out test set of 168,914 patients, in which 14,207 events occurred. Even within the large subset of patients (n = 45,285) with ECGs interpreted as 'normal' by a physician, the performance of the model in predicting 1-year mortality remained high (AUC = 0.85). A blinded survey of cardiologists demonstrated that many of the discriminating features of these normal ECGs were not apparent to expert reviewers. Finally, a Cox proportional-hazard model revealed a hazard ratio of 9.5 (P < 0.005) for the two predicted groups (dead versus alive 1 year after ECG) over a 25-year follow-up period. These results show that deep learning can add substantial prognostic information to the interpretation of 12-lead resting ECGs, even in cases that are interpreted as normal by physicians.

摘要

心电图(ECG)是一种广泛使用的医学测试,由从心脏表面记录的电压与时间迹线组成。在这里,我们假设深度神经网络(DNN)可以从心电图电压-时间迹线上预测重要的未来临床事件,即 1 年全因死亡率。我们使用在一个大型区域卫生系统中收集的 34 年期间的心电图,训练了一个 DNN,该网络使用了来自 253397 名患者的 1169662 份 12 导联静息心电图,其中发生了 99371 例事件。该模型在一个由 168914 名患者组成的独立测试集中的曲线下面积(AUC)为 0.88,其中发生了 14207 例事件。即使在一组(n=45285)由医生判断为“正常”的患者中,该模型预测 1 年死亡率的性能仍然很高(AUC=0.85)。对心脏病专家的盲法调查表明,这些正常心电图的许多区分特征对专家评审员来说并不明显。最后,Cox 比例风险模型显示,在 25 年的随访期间,对于预测的两组(心电图后 1 年死亡与存活),风险比为 9.5(P<0.005)。这些结果表明,深度学习可以为 12 导联静息心电图的解释提供大量预后信息,即使对于医生判断为正常的病例也是如此。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验