Suppr超能文献

乌尔都语-粤语双语少数民族儿童的故事讲述:宏观结构及其与微观结构语言技能的关系。

Story telling in bilingual Urdu-Cantonese ethnic minority children: Macrostructure and its relation to microstructural linguistic skills.

作者信息

Chan Angel, Chen Sarah, Hamdani Saboor, Tse Bernard, Cheng Kelly

机构信息

Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.

Speech Therapy Unit, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China.

出版信息

Front Psychol. 2023 Feb 27;14:924056. doi: 10.3389/fpsyg.2023.924056. eCollection 2023.

Abstract

INTRODUCTION

The ability to produce a well-structured, coherent and informative narrative requires the integration of lexical and grammatical skills at different levels of complexity. Investigating how narrative macrostructure competence is predicted by microstructural linguistic skills is conceptually enlightening; yet there have been very few, if any, studies documenting the associations between macrostructure and microstructure in both languages of the same bilinguals. In this paper we attempt to address this research gap and report on the first empirical study of Urdu-Cantonese bilingual children's narrative abilities, bringing in data from a new language pair that is currently understudied.

METHODS

Twenty-four bilinguals (mean age = 9.17 years) acquiring Urdu as first, family and heritage minority language, and Cantonese as second, school and majority language were assessed Multilingual Assessment Instrument for Narratives (MAIN). We examined these children's macrostructural competence and its relations to microstructural skills in both languages (Urdu and Cantonese). Three macrostructure components were scored as response variables: Story Structure (SS), Story Complexity (SC), Internal State Terms (IST). Four microstructural measures were scored as predictor variables: number of different words (NDW), mean length of Communication Units (MLCU), proportion of grammatical Communication Units (Gproportion), proportion of correct connectives linking the major episodic elements (Cproportion).

RESULTS

In regression analyses, NDW emerged consistently as a positive predictor of SS, SC and IST in both languages. MLCU and NDW were positive predictors of SS in the stronger L1, but NDW was the only positive predictor of SS in L2. By contrast, NDW and an index of syntactic competence (MLCU in L1, but Cproportion in L2) were significant or close-to-significant positive predictors of SC in both languages. NDW was the only positive predictor of IST in both languages. These findings suggested that the relationships between narrative macrostructure and specific microstructural abilities could manifest both similarly and differently between L1 and L2.

DISCUSSION

We discuss the findings by considering the unique nature of each macrostructure component and how each component might be related to specific microstructural linguistic skills. We suggest directions for further research and discuss how the current findings bring deeper implications for educators and clinicians in assessment, pedagogy, and intervention.

摘要

引言

生成结构良好、连贯且信息丰富的叙述需要在不同复杂程度上整合词汇和语法技能。研究微观结构语言技能如何预测叙述宏观结构能力在概念上具有启发性;然而,几乎没有研究记录同一双语者两种语言中宏观结构和微观结构之间的关联。在本文中,我们试图填补这一研究空白,并报告关于乌尔都语 - 粤语双语儿童叙述能力的第一项实证研究,引入来自目前研究不足的新语言对的数据。

方法

对24名双语儿童(平均年龄 = 9.17岁)进行评估,他们将乌尔都语作为第一语言、家庭语言和传承少数族裔语言,将粤语作为第二语言、学校语言和多数族裔语言,使用多语言叙述评估工具(MAIN)。我们考察了这些儿童在两种语言(乌尔都语和粤语)中的宏观结构能力及其与微观结构技能的关系。三个宏观结构成分作为反应变量进行评分:故事结构(SS)、故事复杂性(SC)、内部状态术语(IST)。四个微观结构指标作为预测变量进行评分:不同单词数量(NDW)、交流单元平均长度(MLCU)、语法交流单元比例(Gproportion)、连接主要情节元素的正确连接词比例(Cproportion)。

结果

在回归分析中,NDW始终作为两种语言中SS、SC和IST的正向预测指标出现 ML CU和NDW是较强第一语言中SS的正向预测指标,但NDW是第二语言中SS的唯一正向预测指标。相比之下,NDW和句法能力指标(第一语言中为MLCU,但第二语言中为Cproportion)在两种语言中都是SC的显著或接近显著的正向预测指标。NDW是两种语言中IST的唯一正向预测指标。这些发现表明,叙述宏观结构与特定微观结构能力之间的关系在第一语言和第二语言中可能既表现出相似性,也表现出差异性。

讨论

我们通过考虑每个宏观结构成分的独特性质以及每个成分可能与特定微观结构语言技能的关系来讨论这些发现。我们提出了进一步研究的方向,并讨论了当前研究结果如何为教育工作者和临床医生在评估、教学和干预方面带来更深刻的启示。

相似文献

本文引用的文献

10
Differentiating children with and without language impairment based on grammaticality.基于语法区分有语言障碍和无语言障碍的儿童。
Lang Speech Hear Serv Sch. 2013 Jan;44(1):20-31. doi: 10.1044/0161-1461(2012/11-0089). Epub 2012 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验