Suppr超能文献

卵巢储备功能减退患者卵泡液的代谢组学分析。

Metabonomic analysis of follicular fluid in patients with diminished ovarian reserve.

机构信息

Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.

The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, China.

出版信息

Front Endocrinol (Lausanne). 2023 Feb 27;14:1132621. doi: 10.3389/fendo.2023.1132621. eCollection 2023.

Abstract

BACKGROUND

Ovarian reserve is an important factor determining female reproductive potential. The number and quality of oocytes in patients with diminished ovarian reserve (DOR) are reduced, and even if fertilization-embryo transfer (IVF-ET) is used to assist their pregnancy, the clinical pregnancy rate and live birth rate are still low. Infertility caused by reduced ovarian reserve is still one of the most difficult clinical problems in the field of reproduction. Follicular fluid is the microenvironment for oocyte survival, and the metabolic characteristics of follicular fluid can be obtained by metabolomics technology. By analyzing the metabolic status of follicular fluid, we hope to find the metabolic factors that affect the quality of oocytes and find new diagnostic markers to provide clues for early detection and intervention of patients with DOR.

METHODS

In this research, 26 infertile women with DOR and 28 volunteers with normal ovarian reserve receiving IVF/ET were recruited, and their follicular fluid samples were collected for a nontargeted metabonomic study. The orthogonal partial least squares discriminant analysis model was used to understand the separation trend of the two groups, KEGG was used to analyze the possible metabolic pathways involved in differential metabolites, and the random forest algorithm was used to establish the diagnostic model.

RESULTS

12 upregulated and 32 downregulated differential metabolites were detected by metabolic analysis, mainly including amino acids, indoles, nucleosides, organic acids, steroids, phospholipids, fatty acyls, and organic oxygen compounds. Through KEGG analysis, these metabolites were mainly involved in aminoacyl-tRNA biosynthesis, tryptophan metabolism, pantothenate and CoA biosynthesis, and purine metabolism. The AUC value of the diagnostic model based on the top 10 metabolites was 0.9936.

CONCLUSION

The follicular fluid of patients with DOR shows unique metabolic characteristics. These data can provide us with rich biochemical information and a research basis for exploring the pathogenesis of DOR and predicting ovarian reserve function.

摘要

背景

卵巢储备是决定女性生育潜能的重要因素。患有卵巢储备功能减退(DOR)的患者的卵母细胞数量和质量减少,即使使用体外受精-胚胎移植(IVF-ET)来辅助其妊娠,临床妊娠率和活产率仍然较低。由卵巢储备减少引起的不孕仍然是生殖领域最困难的临床问题之一。卵泡液是卵母细胞生存的微环境,通过代谢组学技术可以获得卵泡液的代谢特征。通过分析卵泡液的代谢状态,我们希望找到影响卵母细胞质量的代谢因素,并找到新的诊断标志物,为 DOR 患者的早期检测和干预提供线索。

方法

本研究纳入了 26 名患有 DOR 的不孕妇女和 28 名接受 IVF/ET 的正常卵巢储备志愿者,并采集了她们的卵泡液样本进行非靶向代谢组学研究。使用正交偏最小二乘判别分析模型了解两组的分离趋势,使用 KEGG 分析涉及差异代谢物的可能代谢途径,并使用随机森林算法建立诊断模型。

结果

通过代谢分析检测到 12 个上调和 32 个下调的差异代谢物,主要包括氨基酸、吲哚、核苷、有机酸、甾体、磷脂、脂肪酸和有机含氧化合物。通过 KEGG 分析,这些代谢物主要涉及氨基酸酰基-tRNA 生物合成、色氨酸代谢、泛酸和 CoA 生物合成以及嘌呤代谢。基于前 10 个代谢物的诊断模型的 AUC 值为 0.9936。

结论

DOR 患者的卵泡液显示出独特的代谢特征。这些数据可为我们提供丰富的生化信息,并为探索 DOR 的发病机制和预测卵巢储备功能提供研究基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa9/10009106/78b52d7d237a/fendo-14-1132621-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验