Suppr超能文献

利用印度阿鲁纳恰尔邦梅豪野生动物保护区的哨兵2号影像进行野生动物栖息地绘图。

Wildlife habitat mapping using Sentinel-2 imagery of Mehao Wildlife Sanctuary, Arunachal Pradesh, India.

作者信息

Ahmad Arif, Kanagaraj Rajapandian, Gopi Govindan Veeraswami

机构信息

Wildlife Institute of India, Chandrabani, Dehradun 248001, Uttrakhand, India.

出版信息

Heliyon. 2023 Feb 20;9(3):e13799. doi: 10.1016/j.heliyon.2023.e13799. eCollection 2023 Mar.

Abstract

Mehao Wildlife Sanctuary, situated in the state of Arunachal Pradesh, is part of an important biodiversity hotspot in the north-eastern part of India in the Himalayas. The current study deals with the identification of important wildlife habitats in the sanctuary. We used a supervised classification technique to delineate these habitats in the sanctuary, which are used by several mammals and bird species encountered during camera trap and sign surveys conducted between November 2017 and May 2020. Satellite images from Sentinel - 2A were used to classify the land use land cover (LULC) of the sanctuary. The LULC information was generated by using a maximum likelihood classifier. We classified a total of thirteen LULC classes, i.e., water, built-up, agriculture, orchard, grassland, bamboo forest, bamboo-mixed forest, riverbed, barren land, snow, wild banana, riverine forest and mixed forest. LULC classification reveals a high percentage of mixed forest, about 69.9%, followed by wild bananas at 7.2%. The commission and omission error rates, however, are high for riverbed and agriculture (0.5) and bamboo forest (0.5), respectively. The accuracy assessment showed an overall classification accuracy of 88.5% with a Kappa coefficient of 0.87. The abundance of mammals was high in the mixed forest, but Ivlev's electivity index shows that species generally avoided this habitat and preferred specialized forest habitats, such as bamboo forest, bamboo-mixed forest, grassland, riverbed and riverine forest. Our LULC map will provide a baseline for potential planning and monitoring changes of wildlife habitats in Mehao WLS.

摘要

梅豪野生动物保护区位于阿鲁纳恰尔邦,是印度东北部喜马拉雅地区重要生物多样性热点地区的一部分。本研究旨在识别该保护区内重要的野生动物栖息地。我们采用监督分类技术来划定保护区内的这些栖息地,这些栖息地被在2017年11月至2020年5月期间进行的相机陷阱和迹象调查中遇到的几种哺乳动物和鸟类所使用。利用哨兵 - 2A卫星图像对保护区的土地利用土地覆盖(LULC)进行分类。LULC信息是通过使用最大似然分类器生成的。我们总共分类了13种LULC类别,即水体、建成区、农业用地、果园、草地、竹林、竹混交林、河床、荒地、雪地、野生香蕉、河岸林和混交林。LULC分类显示混交林占比很高,约为69.9%,其次是野生香蕉,占7.2%。然而,河床和农业用地(0.5)以及竹林(0.5)的错分率和漏分率分别较高。精度评估显示总体分类精度为88.5%,卡帕系数为0.87。混交林中哺乳动物数量众多,但伊夫列夫选择性指数表明,物种通常避开这个栖息地,更喜欢特殊的森林栖息地,如竹林、竹混交林、草地、河床和河岸林。我们的LULC地图将为梅豪野生动物保护区野生动物栖息地的潜在规划和监测变化提供基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c44f/10009465/148aa6b49ab1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验