Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Stat Med. 2018 Mar 15;37(6):914-932. doi: 10.1002/sim.7547. Epub 2017 Dec 20.
Relating time-varying biomarkers of Alzheimer's disease to time-to-event using a Cox model is complicated by the fact that Alzheimer's disease biomarkers are sparsely collected, typically only at study entry; this is problematic since Cox regression with time-varying covariates requires observation of the covariate process at all failure times. The analysis might be simplified by using study entry as the time origin and treating the time-varying covariate measured at study entry as a fixed baseline covariate. In this paper, we first derive conditions under which using an incorrect time origin of study entry results in consistent estimation of regression parameters when the time-varying covariate is continuous and fully observed. We then derive conditions under which treating the time-varying covariate as fixed at study entry results in consistent estimation. We provide methods for estimating the regression parameter when a functional form can be assumed for the time-varying biomarker, which is measured only at study entry. We demonstrate our analytical results in a simulation study and apply our methods to data from the Rush Religious Orders Study and Memory and Aging Project and data from the Alzheimer's Disease Neuroimaging Initiative.
使用 Cox 模型将阿尔茨海默病的时变生物标志物与时间事件相关联是复杂的,因为阿尔茨海默病生物标志物的采集稀疏,通常仅在研究开始时进行; 这是有问题的,因为具有时变协变量的 Cox 回归需要在所有失效时间观察协变量过程。通过将研究开始作为时间原点,并将在研究开始时测量的时变协变量视为固定基线协变量,可以简化分析。在本文中,我们首先推导出在时变协变量连续且完全观察的情况下,使用不正确的研究开始时间原点会导致回归参数一致估计的条件。然后,我们推导出将时变协变量视为在研究开始时固定的情况下一致估计的条件。当可以假设仅在研究开始时测量的时变生物标志物具有函数形式时,我们提供了用于估计回归参数的方法。我们在模拟研究中展示了我们的分析结果,并将我们的方法应用于 Rush 宗教秩序研究和记忆与衰老项目的数据以及阿尔茨海默病神经影像学倡议的数据。