Suppr超能文献

联合纵向和事件发生时间模型的计算方法综述与比较

Review and Comparison of Computational Approaches for Joint Longitudinal and Time-to-Event Models.

作者信息

Furgal Allison K C, Sen Ananda, Taylor Jeremy M G

机构信息

Biostatistics Department, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109.

Department of Family Medicine, Michigan Medicine, University of Michigan, 1018 Fuller St, Ann Arbor, MI 48104.

出版信息

Int Stat Rev. 2019 Aug;87(2):393-418. doi: 10.1111/insr.12322. Epub 2019 Apr 8.

Abstract

Joint models for longitudinal and time-to-event data are useful in situations where an association exists between a longitudinal marker and an event time. These models are typically complicated due to the presence of shared random effects and multiple submodels. As a consequence, software implementation is warranted that is not prohibitively time consuming. While methodological research in this area continues, several statistical software procedures exist to assist in the fitting of some joint models. We review the available implementation for frequentist and Bayesian models in the statistical programming languages R, SAS, and Stata. A description of each procedure is given including estimation techniques, input and data requirements, available options for customization, and some available extensions, such as competing risks models. The software implementations are compared and contrasted through extensive simulation, highlighting their strengths and weaknesses. Data from an ongoing trial on adrenal cancer patients is used to study different nuances of software fitting on a practical example.

摘要

用于纵向数据和事件发生时间数据的联合模型,在纵向标志物与事件时间之间存在关联的情况下很有用。由于存在共享随机效应和多个子模型,这些模型通常很复杂。因此,需要一种不会耗费过多时间的软件实现方式。尽管该领域的方法学研究仍在继续,但已有几种统计软件程序可协助拟合某些联合模型。我们回顾了统计编程语言R、SAS和Stata中针对频率主义模型和贝叶斯模型的可用实现方式。给出了每个程序的描述,包括估计技术、输入和数据要求、可用的定制选项,以及一些可用的扩展,如竞争风险模型。通过广泛的模拟对软件实现方式进行了比较和对比,突出了它们的优缺点。使用来自一项正在进行的肾上腺癌患者试验的数据,通过一个实际例子研究软件拟合的不同细微差别。

相似文献

1
Review and Comparison of Computational Approaches for Joint Longitudinal and Time-to-Event Models.
Int Stat Rev. 2019 Aug;87(2):393-418. doi: 10.1111/insr.12322. Epub 2019 Apr 8.
2
Computational issues in fitting joint frailty models for recurrent events with an associated terminal event.
Comput Methods Programs Biomed. 2020 May;188:105259. doi: 10.1016/j.cmpb.2019.105259. Epub 2019 Dec 2.
5
joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes.
BMC Med Res Methodol. 2018 Jun 7;18(1):50. doi: 10.1186/s12874-018-0502-1.
6
A SAS macro for the joint modeling of longitudinal outcomes and multiple competing risk dropouts.
Comput Methods Programs Biomed. 2017 Jan;138:23-30. doi: 10.1016/j.cmpb.2016.10.003. Epub 2016 Oct 18.
7
Joint Models of Longitudinal and Time-to-Event Data with More Than One Event Time Outcome: A Review.
Int J Biostat. 2018 Jan 31;14(1):ijb-2017-0047. doi: 10.1515/ijb-2017-0047.
8
A Joint Model Approach for Longitudinal Data with no Time-Zero and Time-To-Event with Competing Risks.
Stat Biosci. 2019 Jul;11(2):449-464. doi: 10.1007/s12561-019-09252-4. Epub 2019 Jul 29.
9
Bayesian nonparametric mixed-effects joint model for longitudinal-competing risks data analysis in presence of multiple data features.
Stat Methods Med Res. 2017 Oct;26(5):2407-2423. doi: 10.1177/0962280215597939. Epub 2015 Aug 11.
10

引用本文的文献

1
OUTCOME-GUIDED DISEASE SUBTYPING BY GENERATIVE MODEL AND WEIGHTED JOINT LIKELIHOOD IN TRANSCRIPTOMIC APPLICATIONS.
Ann Appl Stat. 2024 Sep;18(3):1947-1964. doi: 10.1214/23-aoas1865. Epub 2024 Aug 5.
2
5
Modeling unmeasured baseline information in observational time-to-event data subject to delayed study entry.
Stat Methods Med Res. 2023 May;32(5):1021-1032. doi: 10.1177/09622802231163334. Epub 2023 Mar 16.
7
Age and life expectancy clocks based on machine learning analysis of mouse frailty.
Nat Commun. 2020 Sep 15;11(1):4618. doi: 10.1038/s41467-020-18446-0.
8
Genetics of physiological dysregulation: findings from the long life family study using joint models.
Aging (Albany NY). 2020 Apr 1;12(7):5920-5947. doi: 10.18632/aging.102987.

本文引用的文献

1
joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes.
BMC Med Res Methodol. 2018 Jun 7;18(1):50. doi: 10.1186/s12874-018-0502-1.
2
3
A SAS macro for the joint modeling of longitudinal outcomes and multiple competing risk dropouts.
Comput Methods Programs Biomed. 2017 Jan;138:23-30. doi: 10.1016/j.cmpb.2016.10.003. Epub 2016 Oct 18.
5
JMFit: A SAS Macro for Joint Models of Longitudinal and Survival Data.
J Stat Softw. 2016 Jul;71(3). doi: 10.18637/jss.v071.i03. Epub 2016 Jul 11.
6
Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues.
BMC Med Res Methodol. 2016 Sep 7;16(1):117. doi: 10.1186/s12874-016-0212-5.
7
Bayesian joint modeling for assessing the progression of chronic kidney disease in children.
Stat Methods Med Res. 2018 Jan;27(1):298-311. doi: 10.1177/0962280216628560. Epub 2016 Mar 16.
9
Assessing model fit in joint models of longitudinal and survival data with applications to cancer clinical trials.
Stat Med. 2014 Nov 30;33(27):4715-33. doi: 10.1002/sim.6269. Epub 2014 Jul 20.
10
Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data.
Biostatistics. 2014 Oct;15(4):731-44. doi: 10.1093/biostatistics/kxu015. Epub 2014 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验