Furgal Allison K C, Sen Ananda, Taylor Jeremy M G
Biostatistics Department, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109.
Department of Family Medicine, Michigan Medicine, University of Michigan, 1018 Fuller St, Ann Arbor, MI 48104.
Int Stat Rev. 2019 Aug;87(2):393-418. doi: 10.1111/insr.12322. Epub 2019 Apr 8.
Joint models for longitudinal and time-to-event data are useful in situations where an association exists between a longitudinal marker and an event time. These models are typically complicated due to the presence of shared random effects and multiple submodels. As a consequence, software implementation is warranted that is not prohibitively time consuming. While methodological research in this area continues, several statistical software procedures exist to assist in the fitting of some joint models. We review the available implementation for frequentist and Bayesian models in the statistical programming languages R, SAS, and Stata. A description of each procedure is given including estimation techniques, input and data requirements, available options for customization, and some available extensions, such as competing risks models. The software implementations are compared and contrasted through extensive simulation, highlighting their strengths and weaknesses. Data from an ongoing trial on adrenal cancer patients is used to study different nuances of software fitting on a practical example.
用于纵向数据和事件发生时间数据的联合模型,在纵向标志物与事件时间之间存在关联的情况下很有用。由于存在共享随机效应和多个子模型,这些模型通常很复杂。因此,需要一种不会耗费过多时间的软件实现方式。尽管该领域的方法学研究仍在继续,但已有几种统计软件程序可协助拟合某些联合模型。我们回顾了统计编程语言R、SAS和Stata中针对频率主义模型和贝叶斯模型的可用实现方式。给出了每个程序的描述,包括估计技术、输入和数据要求、可用的定制选项,以及一些可用的扩展,如竞争风险模型。通过广泛的模拟对软件实现方式进行了比较和对比,突出了它们的优缺点。使用来自一项正在进行的肾上腺癌患者试验的数据,通过一个实际例子研究软件拟合的不同细微差别。