University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China.
Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
Med Phys. 2022 Feb;49(2):1083-1096. doi: 10.1002/mp.15438. Epub 2022 Jan 18.
High-resolution pelvic magnetic resonance (MR) imaging is important for the high-resolution and high-precision evaluation of pelvic floor disorders (PFDs), but the data acquisition time is long. Because high-resolution three-dimensional (3D) MR data of the pelvic floor are difficult to obtain, MR images are usually obtained in three orthogonal planes: axial, sagittal, and coronal. The in-plane resolution of the MR data in each plane is high, but the through-plane resolution is low. Thus, we aimed to achieve 3D super-resolution using a convolutional neural network (CNN) approach to capture the intrinsic similarity of low-resolution 3D MR data from three orientations.
We used a two-dimensional (2D) super-resolution CNN model to solve the 3D super-resolution problem. The residual-in-residual dense block network (RRDBNet) was used as our CNN backbone. For a given set of low through-plane resolution pelvic floor MR data in the axial or coronal or sagittal scan plane, we applied the RRDBNet sequentially to perform super-resolution on its two projected low-resolution views. Three datasets were used in the experiments, including two private datasets and one public dataset. In the first dataset (dataset 1), MR data acquired from 34 subjects in three planes were used to train our super-resolution model, and low-resolution MR data from nine subjects were used for testing. The second dataset (dataset 2) included a sequence of relatively high-resolution MR data acquired in the coronal plane. The public MR dataset (dataset 3) was used to demonstrate the generalization ability of our model. To show the effectiveness of RRDBNet, we used datasets 1 and 2 to compare RRDBNet with interpolation and enhanced deep super-resolution (EDSR) methods in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index. As 3D MR data from one view have two projected low-resolution views, different super-resolution orders were compared in terms of PSNR and SSIM. Finally, to demonstrate the impact of super-resolution on the image analysis task, we used datasets 2 and 3 to compare the performance of our method with interpolation on the 3D geometric model reconstruction of the urinary bladder.
A CNN-based method was used to learn the intrinsic similarity among MR acquisitions from different scan planes. Through-plane super-resolution for pelvic MR images was achieved without using high-resolution 3D data, which is useful for the analysis of PFDs.
高分辨率盆腔磁共振(MR)成像对于盆腔盆底功能障碍(PFD)的高分辨率和高精度评估非常重要,但数据采集时间较长。由于难以获得高分辨率的盆底 3D MR 数据,因此通常在三个正交平面(轴位、矢状位和冠状位)获取 MR 图像。每个平面的 MR 数据的面内分辨率较高,但穿透平面分辨率较低。因此,我们旨在使用卷积神经网络(CNN)方法实现 3D 超分辨率,以捕获来自三个方向的低分辨率 3D MR 数据的固有相似性。
我们使用二维(2D)超分辨率 CNN 模型来解决 3D 超分辨率问题。残差残差密集块网络(RRDBNet)被用作我们的 CNN 骨干。对于一组给定的低穿透平面分辨率盆腔 MR 数据,在轴位或冠状位或矢状位扫描平面中,我们依次应用 RRDBNet 对其两个投影的低分辨率视图进行超分辨率处理。实验中使用了三个数据集,包括两个私有数据集和一个公共数据集。在第一个数据集(数据集 1)中,使用来自三个平面的 34 个受试者的 MR 数据来训练我们的超分辨率模型,使用九个受试者的低分辨率 MR 数据进行测试。第二个数据集(数据集 2)包括一组在冠状位获得的相对高分辨率 MR 数据序列。公共 MR 数据集(数据集 3)用于演示我们模型的泛化能力。为了展示 RRDBNet 的有效性,我们使用数据集 1 和 2 比较 RRDBNet 与插值和增强深度超分辨率(EDSR)方法在峰值信噪比(PSNR)和结构相似性(SSIM)指数方面的差异。由于来自一个视图的 3D MR 数据有两个投影的低分辨率视图,因此比较了不同的超分辨率阶数在 PSNR 和 SSIM 方面的差异。最后,为了展示超分辨率对图像分析任务的影响,我们使用数据集 2 和 3 比较我们的方法与插值在膀胱 3D 几何模型重建方面的性能。
使用基于 CNN 的方法学习来自不同扫描平面的 MR 采集之间的内在相似性。无需使用高分辨率 3D 数据即可实现盆腔 MR 图像的穿透平面超分辨率,这对 PFD 的分析很有用。