Suppr超能文献

LST-EMG-Net:用于表面肌电手势识别的长短期变压器特征融合网络。

LST-EMG-Net: Long short-term transformer feature fusion network for sEMG gesture recognition.

作者信息

Zhang Wenli, Zhao Tingsong, Zhang Jianyi, Wang Yufei

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing, China.

College of Art and Design, Beijing University of Technology, Beijing, China.

出版信息

Front Neurorobot. 2023 Feb 28;17:1127338. doi: 10.3389/fnbot.2023.1127338. eCollection 2023.

Abstract

With the development of signal analysis technology and artificial intelligence, surface electromyography (sEMG) signal gesture recognition is widely used in rehabilitation therapy, human-computer interaction, and other fields. Deep learning has gradually become the mainstream technology for gesture recognition. It is necessary to consider the characteristics of the surface EMG signal when constructing the deep learning model. The surface electromyography signal is an information carrier that can reflect neuromuscular activity. Under the same circumstances, a longer signal segment contains more information about muscle activity, and a shorter segment contains less information about muscle activity. Thus, signals with longer segments are suitable for recognizing gestures that mobilize complex muscle activity, and signals with shorter segments are suitable for recognizing gestures that mobilize simple muscle activity. However, current deep learning models usually extract features from single-length signal segments. This can easily cause a mismatch between the amount of information in the features and the information needed to recognize gestures, which is not conducive to improving the accuracy and stability of recognition. Therefore, in this article, we develop a long short-term transformer feature fusion network (referred to as LST-EMG-Net) that considers the differences in the timing lengths of EMG segments required for the recognition of different gestures. LST-EMG-Net imports multichannel sEMG datasets into a long short-term encoder. The encoder extracts the sEMG signals' long short-term features. Finally, we successfully fuse the features using a feature cross-attention module and output the gesture category. We evaluated LST-EMG-Net on multiple datasets based on sparse channels and high density. It reached 81.47, 88.24, and 98.95% accuracy on Ninapro DB2E2, DB5E3 partial gesture, and CapgMyo DB-c, respectively. Following the experiment, we demonstrated that LST-EMG-Net could increase the accuracy and stability of various gesture identification and recognition tasks better than existing networks.

摘要

随着信号分析技术和人工智能的发展,表面肌电图(sEMG)信号手势识别在康复治疗、人机交互等领域得到了广泛应用。深度学习逐渐成为手势识别的主流技术。在构建深度学习模型时,有必要考虑表面肌电信号的特征。表面肌电图信号是一种能够反映神经肌肉活动的信息载体。在相同情况下,较长的信号段包含更多关于肌肉活动的信息,而较短的信号段包含较少关于肌肉活动的信息。因此,较长信号段的信号适合识别调动复杂肌肉活动的手势,较短信号段的信号适合识别调动简单肌肉活动的手势。然而,当前的深度学习模型通常从单长度信号段中提取特征。这很容易导致特征中的信息量与识别手势所需的信息不匹配,不利于提高识别的准确性和稳定性。因此,在本文中,我们开发了一种长短期变压器特征融合网络(简称为LST - EMG - Net),该网络考虑了识别不同手势所需的肌电信号段时间长度的差异。LST - EMG - Net将多通道sEMG数据集导入长短期编码器。编码器提取sEMG信号的长短期特征。最后,我们使用特征交叉注意力模块成功融合特征并输出手势类别。我们在基于稀疏通道和高密度的多个数据集上对LST - EMG - Net进行了评估。它在Ninapro DB2E2、DB5E3部分手势和CapgMyo DB - c上的准确率分别达到了81.47%、88.24%和98.95%。实验之后,我们证明了LST - EMG - Net比现有网络能够更好地提高各种手势识别任务的准确性和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcc/10011454/bf721845de8a/fnbot-17-1127338-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验