Jiang Xinyu, Ma Chenfei, Nazarpour Kianoush
School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom.
Front Neurorobot. 2024 Dec 4;18:1462023. doi: 10.3389/fnbot.2024.1462023. eCollection 2024.
Myoelectric control systems translate different patterns of electromyographic (EMG) signals into the control commands of diverse human-machine interfaces via hand gesture recognition, enabling intuitive control of prosthesis and immersive interactions in the metaverse. The effect of arm position is a confounding factor leading to the variability of EMG characteristics. Developing a model with its characteristics and performance invariant across postures, could largely promote the translation of myoelectric control into real world practice.
Here we propose a self-calibrating random forest (RF) model which can (1) be pre-trained on data from many users, then one-shot calibrated on a new user and (2) self-calibrate in an unsupervised and autonomous way to adapt to varying arm positions.
Analyses on data from 86 participants (66 for pre-training and 20 in real-time evaluation experiments) demonstrate the high generalisability of the proposed RF architecture to varying arm positions.
Our work promotes the use of simple, explainable, efficient and parallelisable model for posture-invariant myoelectric control.
肌电控制系统通过手势识别将不同模式的肌电(EMG)信号转换为各种人机接口的控制命令,从而实现对假肢的直观控制以及在元宇宙中的沉浸式交互。手臂位置的影响是导致肌电特征变异性的一个混杂因素。开发一种其特征和性能在不同姿势下保持不变的模型,能够极大地推动肌电控制在现实世界中的应用。
在此,我们提出一种自校准随机森林(RF)模型,该模型能够(1)在来自众多用户的数据上进行预训练,然后在新用户上进行一次性校准,以及(2)以无监督和自主的方式进行自校准,以适应不同的手臂位置。
对来自86名参与者的数据(66名用于预训练,20名用于实时评估实验)进行的分析表明,所提出的RF架构对不同手臂位置具有高度的通用性。
我们的工作推动了使用简单、可解释、高效且可并行化的模型进行姿势不变的肌电控制。