Meng Xiang, Wu Tian-Gang, Lou Qiu-Yue, Niu Kai-Yuan, Jiang Lei, Xiao Qing-Zhong, Xu Tao, Zhang Lei
College & Hospital of Stomatology Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province Hefei People's Republic of China.
Anhui Provincial Center for Disease Control and Prevention Hefei People's Republic of China.
Bioeng Transl Med. 2022 Dec 23;8(2):e10474. doi: 10.1002/btm2.10474. eCollection 2023 Mar.
Cancer is a genetic disease caused by alterations in genome and epigenome and is one of the leading causes for death worldwide. The exploration of disease development and therapeutic strategies at the genetic level have become the key to the treatment of cancer and other genetic diseases. The functional analysis of genes and mutations has been slow and laborious. Therefore, there is an urgent need for alternative approaches to improve the current status of cancer research. Gene editing technologies provide technical support for efficient gene disruption and modification in vivo and in vitro, in particular the use of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems. Currently, the applications of CRISPR-Cas systems in cancer rely on different Cas effector proteins and the design of guide RNAs. Furthermore, effective vector delivery must be met for the CRISPR-Cas systems to enter human clinical trials. In this review article, we describe the mechanism of the CRISPR-Cas systems and highlight the applications of class II Cas effector proteins. We also propose a synthetic biology approach to modify the CRISPR-Cas systems, and summarize various delivery approaches facilitating the clinical application of the CRISPR-Cas systems. By modifying the CRISPR-Cas system and optimizing its in vivo delivery, promising and effective treatments for cancers using the CRISPR-Cas system are emerging.
癌症是一种由基因组和表观基因组改变引起的遗传疾病,是全球主要死因之一。在基因水平上探索疾病发展和治疗策略已成为治疗癌症和其他遗传疾病的关键。基因和突变的功能分析一直缓慢且费力。因此,迫切需要替代方法来改善当前癌症研究的状况。基因编辑技术为体内外高效基因破坏和修饰提供了技术支持,特别是成簇规律间隔短回文重复序列(CRISPR)-Cas系统的应用。目前,CRISPR-Cas系统在癌症中的应用依赖于不同的Cas效应蛋白和引导RNA的设计。此外,CRISPR-Cas系统进入人体临床试验必须满足有效的载体递送。在这篇综述文章中,我们描述了CRISPR-Cas系统的机制,并强调了II类Cas效应蛋白的应用。我们还提出了一种合成生物学方法来修饰CRISPR-Cas系统,并总结了促进CRISPR-Cas系统临床应用的各种递送方法。通过修饰CRISPR-Cas系统并优化其体内递送,使用CRISPR-Cas系统治疗癌症的有前景且有效的方法正在出现。