Meister Michela, Kleinberg Jon
Department of Computer Science, Cornell University, Ithaca, NY 14853, USA.
PNAS Nexus. 2023 Jan 20;2(3):pgad003. doi: 10.1093/pnasnexus/pgad003. eCollection 2023 Mar.
Contact tracing is a key tool for managing epidemic diseases like HIV, tuberculosis, COVID-19, and monkeypox. Manual investigations by human-contact tracers remain a dominant way in which this is carried out. This process is limited by the number of contact tracers available, who are often overburdened during an outbreak or epidemic. As a result, a crucial decision in any contact tracing strategy is, given a set of contacts, which person should a tracer trace next? In this work, we develop a formal model that articulates these questions and provides a framework for comparing contact tracing strategies. Through analyzing our model, we give provably optimal prioritization policies via a clean connection to a tool from operations research called a "branching bandit". Examining these policies gives qualitative insight into trade-offs in contact tracing applications.
接触者追踪是管理诸如艾滋病毒、结核病、新冠病毒和猴痘等传染病的关键工具。由人工接触者追踪员进行的手动调查仍然是开展此项工作的主要方式。这一过程受到可用接触者追踪员数量的限制,在疫情爆发期间,他们往往负担过重。因此,在任何接触者追踪策略中,一个关键的决策是,在一组接触者中,追踪员接下来应该追踪哪个人?在这项工作中,我们开发了一个形式化模型,阐述了这些问题,并提供了一个比较接触者追踪策略的框架。通过分析我们的模型,我们通过与运筹学中的一种称为“分支强盗”的工具建立清晰的联系,给出了可证明的最优优先级策略。研究这些策略可以对接触者追踪应用中的权衡进行定性洞察。