Suppr超能文献

基于磁共振成像测量的深度学习辅助诊断股骨滑车发育不良

Deep learning-assisted diagnosis of femoral trochlear dysplasia based on magnetic resonance imaging measurements.

作者信息

Xu Sheng-Ming, Dong Dong, Li Wei, Bai Tian, Zhu Ming-Zhu, Gu Gui-Shan

机构信息

Department of Orthopedic Surgery, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China.

Department of Radiology, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China.

出版信息

World J Clin Cases. 2023 Mar 6;11(7):1477-1487. doi: 10.12998/wjcc.v11.i7.1477.

Abstract

BACKGROUND

Femoral trochlear dysplasia (FTD) is an important risk factor for patellar instability. Dejour classification is widely used at present and relies on standard lateral X-rays, which are not common in clinical work. Therefore, magnetic resonance imaging (MRI) has become the first choice for the diagnosis of FTD. However, manually measuring is tedious, time-consuming, and easily produces great variability.

AIM

To use artificial intelligence (AI) to assist diagnosing FTD on MRI images and to evaluate its reliability.

METHODS

We searched 464 knee MRI cases between January 2019 and December 2020, including FTD ( = 202) and normal trochlea ( = 252). This paper adopts the heatmap regression method to detect the key points network. For the final evaluation, several metrics (accuracy, sensitivity, specificity, .) were calculated.

RESULTS

The accuracy, sensitivity, specificity, positive predictive value and negative predictive value of the AI model ranged from 0.74-0.96. All values were superior to junior doctors and intermediate doctors, similar to senior doctors. However, diagnostic time was much lower than that of junior doctors and intermediate doctors.

CONCLUSION

The diagnosis of FTD on knee MRI can be aided by AI and can be achieved with a high level of accuracy.

摘要

背景

股骨滑车发育不良(FTD)是髌骨不稳定的重要危险因素。目前广泛使用的德茹尔分类法依赖于标准的膝关节侧位X线片,而这在临床工作中并不常见。因此,磁共振成像(MRI)已成为诊断FTD的首选方法。然而,手动测量繁琐、耗时,且容易产生较大差异。

目的

利用人工智能(AI)辅助在MRI图像上诊断FTD并评估其可靠性。

方法

我们检索了2019年1月至2020年12月期间的464例膝关节MRI病例,其中包括FTD(n = 202)和正常滑车(n = 252)。本文采用热图回归方法检测关键点网络。对于最终评估,计算了几个指标(准确率、灵敏度、特异度等)。

结果

AI模型的准确率、灵敏度、特异度、阳性预测值和阴性预测值在0.74 - 0.96之间。所有数值均优于低年资医生和中年资医生,与高年资医生相近。然而,诊断时间远低于低年资医生和中年资医生。

结论

AI可辅助膝关节MRI对FTD进行诊断,且能达到较高的准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验